├── super_resolution
│ ├── DIV2K
│ │ ├── DIV2K_train_HR
│ │ ├── DIV2K_train_LR_bicubic
│ │ │ ├── X2
│ │ │ ├── X3
│ │ │ ├── X4
│ │ ├── DIV2K_valid_HR
│ │ ├── DIV2K_valid_LR_bicubic
│ │ │ ├── X2
│ │ │ ├── X3
│ │ │ └── X4
│ │ └──
│ ├── benchmark
│ │ ├── Set5
│ │ ├── Set14
│ │ ├── B100
│ │ ├── Urban100
│ │ └──
│ └──
├── denoise
│ ├── DIV2KGRAY
│ │ ├── Train_HR
│ │ └──
│ ├── BenchmarkDenoise
│ │ ├── DenoiseSet68
│ │ │ ├── bin
│ │ │ └──
│ │ └──
│ └──
└──
-
Prepare image super-resolution and denoising dataset.
i. Download DIV2K training and validation images in the NTIRE-2017 challenge.
ii. Download super-resolution (Set5, Set14, B100, and Urban100) benchmark and denoising benchmark (Set68) from GoogleDrive or Dropbox.
iii. Prepare the folder structure like the one above.
-
Download the compressed models form Google Drive or Dropbox.
-
cd ./scripts/dhp/
-
Test the compressed DnCNN, UNet, SRResNet, and EDSR models.
bash test_dncnn.sh bash test_unet.sh bash test_srresnet.sh bash test_edsr.sh
-
Be sure to change the
--pretrain
,--dir_data
,--dir_save
directories.
-
cd ./scripts/dhp/
-
Run the code to compress DnCNN, UNet, SRResNet, and EDSR networks.
bash dhp_dncnn.sh bash dhp_unet.sh bash dhp_srresnet.sh bash dhp_edsr.sh
-
Be sure to change the
--pretrain
,--dir_data
,--dir_save
directories.