-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlane_lines.py
91 lines (77 loc) · 2.9 KB
/
lane_lines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import numpy as np
import cv2
def make_points(image, line):
slope, intercept = line
y1 = int(image.shape[0])# bottimport numpy as np
y2 = int(y1/4) # slightly lower than the middle
x1 = int((y1 - intercept)/slope)
x2 = int((y2 - intercept)/slope)
return [[x1, y1, x2, y2]]
def average_slope_intercept(image, lines):
left_fit=[]
right_fit=[]
if lines is None:
return None
for line in lines:
for x1, y1, x2, y2 in line:
fit = np.polyfit((x1,x2), (y1,y2), 1)
slope = fit[0]
intercept = fit[1]
if slope < 0: # y is reversed in image
left_fit.append((slope, intercept))
else:
right_fit.append((slope, intercept))
left_fit_average = np.average(left_fit, axis=0)
right_fit_average = np.average(right_fit, axis=0)
left_line = make_points(image, left_fit_average)
right_line = make_points(image, right_fit_average)
averaged_lines=[left_line,right_line]
return averaged_lines
def canny(img):
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
kernel = 5
blur = cv2.GaussianBlur(gray,(kernel, kernel),0)
canny = cv2.Canny(gray, 50, 150)
return canny
def display_lines(img,lines):
line_image = np.zeros_like(img)
if lines is not None:
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(line_image,(x1,y1+int(img.shape[0]/2)),(x2,y2+int(img.shape[0]/2)),(255,0,0),10)
return line_image
def region_of_interest(canny):
height = canny.shape[0]
width = canny.shape[1]
mask = np.zeros_like(canny)
triangle = np.array([[
(0, height),
(550, 0),
(width, height),]], np.int32)
cv2.fillPoly(mask, triangle, 255)
masked_image = cv2.bitwise_and(canny, mask)
return masked_image
# image = cv2.imread('test_image.jpg')
# lane_image = np.copy(image)
# lane_canny = canny(lane_image)
# cropped_canny = region_of_interest(lane_canny)
# lines = cv2.HoughLinesP(cropped_canny, 2, np.pi/180, 100, np.array([]), minLineLength=40,maxLineGap=5)
# averaged_lines = average_slope_intercept(image, lines)
# line_image = display_lines(lane_image, averaged_lines)
# combo_image = cv2.addWeighted(lane_image, 0.8, line_image, 1, 0)
#
cap = cv2.VideoCapture('test3.mp4')
while(cap.isOpened()):
_, frame = cap.read()
frame1=frame[int(frame.shape[0]/2):int(frame.shape[0]),0:frame.shape[1]]
canny_image = canny(frame1)
# cropped_canny = region_of_interest(canny_image)
lines = cv2.HoughLinesP(canny_image, 2, np.pi/180, 100, np.array([]), minLineLength=40,maxLineGap=5)
averaged_lines = average_slope_intercept(frame1, lines)
line_image = display_lines(frame, averaged_lines)
combo_image = cv2.addWeighted(frame, 0.8, line_image, 1, 1)
cv2.imshow("result", combo_image)
if cv2.waitKey(10) & 0xFF == ord('s'):
break
cap.release()
cv2.destroyAllWindows()