forked from KianiLab/Waskom_JVision_2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstimulus.py
439 lines (332 loc) · 12.5 KB
/
stimulus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import numpy as np
from scipy import stats, integrate
from scipy.special import gamma, beta
from scipy.ndimage import maximum_filter, rotate
import matplotlib.pyplot as plt
from matplotlib import animation
from IPython.display import HTML
def dot_movie(radius, density, size, speed, coherence, ppd, framerate,
duration, moments, seed=None):
"""Make a 3D array with a patch from the random dot stimulus.
Parameters
----------
radius : float
Size of the dot aperture in degrees.
density : float
Dots per degree squared per second.
size : int
Width of each dot in pixels.
speed :float
Speed of the coherent motion in degrees per second.
coherence : float
Proportion of dots that move coherently on each frame.
ppd : float
Pixels per degree.
framerate : float
Sampling rate for the temporal dimension.
duration : float
Length of the movie in seconds.
moments : four-tuple
Mean, std dev, skewness, and kurtosis of angular displacements,
in degrees.
seed : int or None
Seed for the random number generator to get reproducible movies.
Returns
-------
movie : 3d array
Spatiotemporal array with the stimulus movie.
"""
rs = np.random.RandomState(seed)
# Initialize the spatial grid
n_pix = int(2 * radius * ppd)
grid = np.linspace(-radius, radius, n_pix)
xx, yy = np.meshgrid(grid, grid)
# Define thetas to sample dot displacements from
thetas = np.linspace(-np.pi, np.pi, 1000)
# Initialize the dots
n_dots = int(np.round(density * np.pi * radius ** 2 / 75))
xy = rs.uniform(-radius, radius, (2, n_dots))
frames = []
for _ in range(int(duration / framerate)):
# Create a blank image for this frame
img = np.zeros_like(xx)
# Determine which dots will move coherently
signal = rs.rand(n_dots) < coherence
# Sample the angles of coherent dot motion
mean, std, skew, kurtosis = moments
angle = pearsrnd(thetas, np.deg2rad(mean), np.deg2rad(std),
skew, kurtosis, n_dots)
# Convert to x y displacements
norm = speed * framerate
dxdy = np.array([norm * np.cos(angle), norm * np.sin(angle)])
# Update dot positions
xy = np.where(signal,
xy + dxdy,
rs.uniform(-radius, radius, (2, n_dots)))
# Wrap-around for dots that have moved outside the aperture
oob = np.abs(xy) > radius
xy[oob] = -xy[oob] + dxdy[oob]
# Draw dots in the screen image
i, j = np.round(xy * ppd + radius * ppd - size / 2).astype(np.int)
img[i, j] = 1
img = maximum_filter(img, size)
frames.append(img)
movie = np.stack(frames, axis=-1)
return movie
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def grating_movie(radius, cpd, speed, ppd, framerate, duration, angle):
"""Make a 3D array showing a drifting grating.
Parameters
----------
radius : float
Radius of the aperture, in degrees.
cpd : float
Spatial frequency of the grating (cycles per degree).
speed : float
Drift speed, in degrees per second.
ppd : float
Spatial resolution of the display, in pixels per degree.
framerate : float
Temporal resolution of the movie, in frames per second.
duration : float
Duration of the movie, in seconds.
angle : float
Orientation of the grating, in degrees.
Returns
-------
movie : 3D numpy array
Spatiotemporal array with the simulus movie.
"""
dx = 1 / ppd
npix = 2 * radius * ppd
n_frames = duration // framerate
xx = np.linspace(-np.pi, np.pi, npix + 1)[:-1] * cpd * dx * npix
grating, _ = np.meshgrid(np.sin(xx), xx, indexing="ij")
step = speed * dx / dx
offsets = np.arange(0, n_frames * step, step).round().astype(int)
movie = np.stack([
rotate(np.roll(grating, i, 0), angle, reshape=False) for i in offsets
], axis=-1)
movie = (movie + 1) / 2
return movie
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def play_movie(movie, framerate=1 / 60, aperture=False, size=5, as_html5=True,
**kwargs):
"""Turn a 3D movie array into a matplotlib animation or HTML movie.
Parameters
----------
movie : 3D numpy array
Array with time on the final axis.
framerate : float
Temporal resolution of the movie, in frames per second.
aperture : bool
If True, show only a central circular aperture.
size : float
Size of the underlying matplotlib figure, in inches.
as_html : bool
If True, return an HTML5 video; otherwise return the underying
matplotlib animation object (e.g. to save to .gif).
Returns
-------
anim : HTML object or FuncAnimation object
Animation, format depends on `as_html`.
"""
# Initialize the figure and an empty array for the frames
f, ax = plt.subplots(figsize=(size, size))
f.subplots_adjust(0, 0, 1, 1)
ax.set_axis_off()
kwargs.setdefault("vmin", 0)
kwargs.setdefault("vmax", 1)
kwargs.setdefault("cmap", "gray")
array = ax.imshow(np.zeros(movie.shape[:-1]), **kwargs)
# Define the part of the image to show
if aperture:
aperture = circular_aperture(movie)
else:
aperture = np.ones(movie.shape[:2], np.bool)
# Define animation functions
def init_movie():
return array,
def animate_movie(i):
frame = movie[..., i].astype(np.float)
frame[~aperture] = np.nan
array.set_data(np.rot90(frame))
return array,
# Produce the animation
anim = animation.FuncAnimation(f,
frames=movie.shape[-1],
interval=framerate * 1000,
blit=True,
func=animate_movie,
init_func=init_movie)
plt.close(f)
if as_html5:
return HTML(anim.to_html5_video())
return anim
def circular_aperture(a):
"""Define circular aperture for an array with square spatial dims."""
n = a.shape[0]
xx = np.linspace(-n / 2, n / 2, n)
xx, yy = np.meshgrid(xx, xx)
return np.sqrt(xx ** 2 + yy ** 2) < (n / 2)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def pearspdf(x, mu, sigma, skew, kurt):
"""Pearson distribution probability density function.
Returns the probability distribution denisty of the pearsons distribution
with mean `mu`, standard deviation `sigma`, skewness `skew` and
kurtosis `kurt`, evaluated at the values in x.
Some combinations of moments are not valid for any random variable, and
in particular, the kurtosis must be greater than the square of the
skewness plus 1. The kurtosis of the normal distribution is defined to
be 3.
The seven distribution types in the Pearson system correspond to the
following distributions:
Type 0: Normal distribution
Type 1: Four-parameter beta
Type 2: Symmetric four-parameter beta
Type 3: Three-parameter gamma
Type 4: Not related to any standard distribution.
Density proportional to:
(1+((x-a / b)^2)^(-c) * exp(-d*arctan((x-a / b)).
Type 5: Inverse gamma location-scale
Type 6: F location-scale
Type 7: Student's t location-scale
References:
[1] Johnson, N.L., S. Kotz, and N. Balakrishnan (1994) Continuous
Univariate Distributions, Volume 1, Wiley-Interscience.
[2] Devroye, L. (1986) Non-Uniform Random Variate Generation,
Springer-Verlag.
Translated from the MATLAB pearspdf function.
Original Author Information:
Pierce Brady
Smart Systems Integration Group - SSIG
Cork Institute of Technology, Ireland.
"""
eps = np.finfo(np.float).eps
realmin = np.finfo(np.double).tiny
x_orig = x.copy()
x = (x - mu) / sigma
beta1 = skew ** 2
beta2 = kurt
if sigma <= 0:
raise ValueError("Standard deviation must be positive")
if beta2 <= (beta1 + 1):
raise ValueError("Skewness must be greater than kurtosis plus 1")
c0 = (4 * beta2 - 3 * beta1)
c1 = skew * (beta2 + 3)
c2 = (2 * beta2 - 3 * beta1 - 6)
if c1 == 0:
if beta2 == 3:
pearstype = 0
else:
if beta2 < 3:
pearstype = 2
elif beta2 > 3:
pearstype = 7
a1 = -np.sqrt(abs(c0 / c2))
a2 = -a1
elif c2 == 0:
pearstype = 3
a1 = -c0 / c1
else:
kappa = c1 ** 2 / (4*c0 * c2)
if kappa < 0:
pearstype = 1
elif kappa < (1 - eps):
pearstype = 4
elif kappa <= (1 + eps):
pearstype = 5
else:
pearstype = 6
# Solve the quadratic for general roots a1 and a2
# and sort by their real parts
tmp = -(c1 + np.sign(c1) * np.sqrt(c1 ** 2 - 4 * c0 * c2)) / 2
a1 = tmp / c2
a2 = c0 / tmp
denom = 10 * beta2 - 12 * beta1 - 18
if abs(denom) > np.sqrt(realmin):
c0 = c0 / denom
c1 = c1 / denom
c2 = c2 / denom
else:
pearstype = 1
# -- Normal: standard support (-Inf,Inf)
if pearstype == 0:
m1 = 0
m2 = 1
p = stats.norm.pdf(x, m1, m2)
# -- Four-parameter beta: standard support (a1,a2)
elif pearstype == 1:
if abs(denom) > np.sqrt(realmin):
m1 = (c1 + a1) / (c2 * (a2 - a1))
m2 = -(c1 + a2) / (c2 * (a2 - a1))
else:
# c1 and c2 -> Inf, but c / c2 has finite limit
m1 = c1 / (c2 * (a2 - a1))
m2 = -c1 / (c2 * (a2 - a1))
# Transform to 0-1 interval
x = (x - a1) / (a2 - a1)
p = stats.beta.pdf(x, m1 + 1, m2 + 1)
elif pearstype == 2:
# symmetric four-parameter beta: standard support (-a1,a1)
m = (c1 + a1) / (c2 * 2 * abs(a1))
x = (x - a1) / (2 * abs(a1))
p = stats.beta.pdf(x, m + 1, m + 1)
# -- three-parameter gamma: standard support (a1,Inf) or (-Inf,a1)
elif pearstype == 3:
m = (c0 / c1 - c1) / c1
x = (x - a1) / c1
p = stats.gamma.pdf(x, m + 1)
# -- Pearson IV is not a transformation of a standard distribution:
elif pearstype == 4:
# density proportional to
# (1+((x-lambda / a)^2)^(-m) * exp(-nu*arctan((x-lambda / a)),
# standard support (-Inf,Inf)
m = 1 / (2 * c2)
nu = 2 * c1 * (1 - m) / np.sqrt((4 * c0 * c2 - c1 ** 2))
b = 2 * (m - 1)
a = np.sqrt(b ** 2 * (b-1) / (b ** 2 + nu ** 2))
lam = a * nu / b
p = _pearson4pdf(x, m, nu, a, lam) / sigma
# -- Inverse gamma loc-scale: standard support (-C1,Inf) or (-Inf,-C1)
elif pearstype == 5:
C1 = c1 / (2 * c2)
x = -((c1 - C1) / c2) / (x + C1)
p = stats.gamma.pdf(x, 1 / c2 - 1)
# -- F location-scale: standard support (a2,Inf) or (-Inf,a1)
elif pearstype == 6:
m1 = (a1 + c1) / (c2 * (a2 - a1))
m2 = -(a2 + c1) / (c2 * (a2 - a1))
if a2 < 0:
nu1 = 2 * (m2 + 1)
nu2 = -2 * (m1 + m2 + 1)
x = (x - a2) / (a2 - a1) * (nu2 / nu1)
p = stats.f.pdf(x, nu1, nu2)
else:
nu1 = 2 * (m1 + 1)
nu2 = -2 * (m1 + m2 + 1)
x = (x - a1) / (a1 - a2) * (nu2 / nu1)
p = stats.f.pdf(x, nu1, nu2)
# -- t location-scale: standard support (-Inf,Inf)
elif pearstype == 7:
nu = 1 / c2 - 1
x = x / np.sqrt(c0 / (1 - c2))
p = stats.t.pdf(x, nu)
# Normalize the PDF
p /= integrate.trapz(p, x_orig)
return p
def _pearson4pdf(x, m, nu, a, lam):
x = (x - lam) / a
p1 = (np.abs(gamma(m + (nu / 2) * 1j) / gamma(m)) ** 2
/ (a * beta(m - 5, 5 * np.ones_like(m))))
p2 = (1 + x ** 2) ** -m * np.exp(-nu * np.arctan(x))
assert not np.isnan(p1).any()
assert not np.isnan(p2).any()
return p1 * p2
def pearsrnd(x, mu, sigma, skew, kurt, size=1, random_state=None):
"""Random samples from the Pearson distribution on support mesh x."""
if random_state is None:
rs = np.random.RandomState()
p = pearspdf(x, mu, sigma, skew, kurt)
p /= p.sum()
return rs.choice(x, replace=True, p=p, size=size)