-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmnist_train.py
229 lines (186 loc) · 8.44 KB
/
mnist_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import datetime
import numpy as np
import torch
from data.load_data import load_mnist, load_fashion_mnist
from models.misvae import MISVAECNN
import argparse
import time
from tqdm import tqdm
def trainer(vae, train_dataloader, val_dataloader, dir_, n_epochs=200,
verbose=True, L=50, warmup=None, N=100, val_obj_f="miselbo", convs=False):
if warmup == "kl_warmup":
vae.beta = 0
vae.train()
train_loss_avg = np.zeros(n_epochs)
eval_loss_avg = []
best_nll = 1e10
best_epoch = 0
training_time = 0
for epoch in range(n_epochs):
num_batches = 0
if warmup == "kl_warmup":
vae.beta = np.minimum(1 / (N - 1) * epoch, 1.)
start_time = time.time()
for x, y in train_dataloader:
x = x.to(vae.device).float().view((-1, 1, 28, 28))
if not convs:
x = x.view((-1, vae.x_dims))
x = torch.bernoulli(x)
components = torch.zeros(vae.S, device=vae.device)
idx = torch.multinomial(torch.ones(vae.S) / vae.S, vae.n_A, replacement=False)
components[idx] = 1.
loss = vae.backpropagate(x, components)
train_loss_avg[epoch] += loss.item()
num_batches += 1
epoch_time = time.time() - start_time
training_time += epoch_time
test_nll = evaluate(vae, val_dataloader, L=L, obj_f=val_obj_f, convs=convs)
train_loss_avg[epoch] /= num_batches
eval_loss_avg.append(test_nll)
if test_nll < best_nll:
path = os.path.join(dir_, "best_model")
torch.save(vae.state_dict(), path)
best_nll = test_nll
best_epoch = epoch
# elif (epoch - best_epoch) >= 100:
# return train_loss_avg, eval_loss_avg, training_time, training_time / (epoch + 1)
if verbose and epoch % 10 == 0:
print("Epoch: ", epoch)
print(f"Test NLL: ", test_nll, f" ({round(best_nll, 2)}; {best_epoch})")
print("Avg. training time", training_time / (epoch + 1))
if warmup == "kl_warmup":
print("Beta: ", round(vae.beta, 2))
return train_loss_avg, eval_loss_avg, training_time, training_time / (epoch + 1)
def evaluate(vae, dataloader, L, obj_f='iwelbo', convs=False):
if L == 0:
L = vae.L
elbo = 0
num_batches = 0
for x, y in dataloader:
x = x.to(vae.device).float().view((-1, 1, 28, 28))
if not convs:
x = x.view((-1, vae.x_dims))
with torch.no_grad():
# components = torch.ones(vae.S, device=vae.device)
components = torch.zeros(vae.S, device=vae.device)
idx = torch.multinomial(torch.ones(vae.S) / vae.S, vae.n_A, replacement=False)
components[idx] = 1.
outputs = vae(x, components, L)
log_w, log_p, log_q = vae.get_log_w(x, *outputs)
loss = vae.loss(log_w, log_p, log_q, L, obj_f=obj_f)
elbo += loss.item()
num_batches += len(x)
avg_elbo = elbo / num_batches
return avg_elbo
def evaluate_in_parts(vae, dataloader, L, obj_f, parts=10, convs=False):
if L == 0:
L = vae.L
elbo = 0
num_batches = 0
if parts > L:
print(f"parts {parts} > L {L}")
return
if convs:
parts = L
for x, y in tqdm(dataloader):
x = x.to(vae.device).float().view((-1, 1, 28, 28))
if not convs:
x = x.view((-1, vae.x_dims))
components = torch.ones(vae.S, device=vae.device)
with torch.no_grad():
log_p = []
log_q = []
for r in range(parts):
outputs = vae(x, components, L//parts)
_, log_p_r, log_q_r = vae.get_log_w(x, *outputs)
log_p.append(log_p_r)
log_q.append(log_q_r)
loss = vae.loss(_, torch.cat(log_p), torch.cat(log_q), L, obj_f=obj_f)
elbo += loss.item()
num_batches += len(x)
avg_elbo = elbo / num_batches
return avg_elbo
def main(args):
L_final = args.L_final
n_epochs = args.no_epochs
batch_size_tr = args.batch_size
N = 100
seed = args.seed
obj_f = 'miselbo'
device = f"cuda:{args.device}"
if args.dataset == 'mnist':
train_dataloader, val_dataloader, test_dataloader = load_mnist(batch_size_tr=batch_size_tr,
batch_size_val=batch_size_tr,
batch_size_test=100)
elif args.dataset == 'fashion_mnist':
train_dataloader, val_dataloader, test_dataloader = load_fashion_mnist(batch_size_tr=batch_size_tr,
batch_size_val=batch_size_tr,
batch_size_test=100)
lr = args.lr
store_path = "saved_models/mnist_models"
warmup = args.warmup
vae = MISVAECNN(S=args.S, n_A=args.n_A, lr=lr, seed=seed, L=args.L, device=device, z_dims=args.latent_dims,
residual_encoder=args.res_enc, estimator=args.estimator)
convs = True
print("Num. params: ", count_parameters(vae))
vae.model_name += f"_lr_{lr}_bs_{batch_size_tr}_warmup_{warmup}_nA_{vae.n_A}"
folder = str(datetime.datetime.now())[0:16] + "_" + vae.model_name + f"_epochs_{n_epochs}_L_{L_final}"
dir_ = os.path.join(store_path, folder)
os.makedirs(dir_)
train_loss, eval_loss, training_time, avg_epoch_time = trainer(
vae, train_dataloader, val_dataloader, dir_, n_epochs=n_epochs, L=1, warmup=warmup, N=N,
val_obj_f=obj_f, convs=convs)
np.save(f'{dir_}/train_loss.npy', train_loss)
np.save(f'{dir_}/eval_loss.npy', eval_loss)
np.save(f'{dir_}/args.npy', args)
np.save(f'{dir_}/training_time.npy', np.array([training_time]))
np.save(f'{dir_}/avg_epoch_time.npy', np.array([avg_epoch_time]))
print("\nLoading best model\n")
vae.load_state_dict(torch.load(os.path.join(dir_, "best_model")))
print("Evaluating by parts")
avg_elbo = evaluate_in_parts(vae, test_dataloader, L=args.L_final, obj_f=obj_f, convs=True)
print("Final ELBO: ", avg_elbo)
np.save(f'{dir_}/test_elbo.npy', avg_elbo)
def count_parameters(model):
return sum(p.numel() for p in model.parameters())
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MISVAE')
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--S', type=int, default=1)
parser.add_argument('--model', type=str, default='misvaewcnn')
parser.add_argument('--latent_dims', type=int, default=40)
parser.add_argument('--warmup', type=str, default='kl_warmup')
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--L', type=int, default=1)
parser.add_argument('--L_final', type=int, default=5000)
parser.add_argument('--lr', type=float, default=0.0005)
parser.add_argument('--dataset', type=str, default='mnist')
parser.add_argument('--n_A', type=int, default=1)
parser.add_argument('--res_enc', type=int, default=1)
parser.add_argument('--estimator', type=str, default='s2s')
parser.add_argument('--no_epochs', type=int, default=2000)
args = parser.parse_args()
print(args)
main(args)
#for S, n_A in [(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3), (4, 4)]:
# args.n_A = n_A
# args.S = S
# print(args)
# main(args)
"""
vae = MISVAECNN(S=S)
convs = True
print('Loading best model')
vae.load_state_dict(torch.load(os.path.join("/home/oskar/phd/efficient_mixtures/saved_models/mnist_models/"
"2023-08-22 16:06_MISVAEwCNN_a_1.0_seed_0_S_1_lr_0.0005_bs_100_warmup_kl_warmup_N_100_epochs_4000_L_1000",
"best_model")))
print("Evaluating by parts")
train_dataloader, val_dataloader, test_dataloader = load_mnist(batch_size_tr=100,
batch_size_val=100,
batch_size_test=2000)
avg_elbo = evaluate_in_parts(vae, test_dataloader, L=1000, obj_f="miselbo", convs=True)
# avg_elbo = evaluate(vae, test_dataloader, L=5000, obj_f="miselbo")
print("Final NLL: ", avg_elbo)
"""