-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequence_data.py
57 lines (45 loc) · 1.62 KB
/
sequence_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
from PIL import Image
import torch
from torch.utils import data
from sequence_data_interface import seqDataset_interface
class seqDataset(data.Dataset):
def __init__(self, split, transform=None):
"""
:param split: 'train' | 'test'.
"""
self.split = split
self.transform = transform
imdb = seqDataset_interface()
data_seq = imdb.generate_data_sequence(self.split)
self.data = self.get_data(data_seq)
def __getitem__(self, index):
bbox = self.data['bbox'][index]
image = Image.open(self.data['image'][index]).convert('RGB')
im_crop = image.crop(tuple(bbox))
if self.transform is not None:
im_crop =self.transform(im_crop)
label = self.data['label'][index]
oid = self.data['id'][index]
ret = {'image':im_crop, 'label':label, 'oid':oid, 'sid':index}
return ret
def __len__(self):
return len(self.data[list(self.data.keys())[0]])
def get_data(self, data):
"""
:param data: The raw data
:return: A dictionary containing training and testing data
"""
ret = {}
for k in data.keys():
tracks = []
for track in data[k]:
tracks.extend(track)
if k=='bbox':
tracks = np.asarray(tracks)
tracks[:,2] = tracks[:,0] + tracks[:,2]
tracks[:,3] = tracks[:,1] + tracks[:,3]
ret[k] = tracks
return ret
if __name__ == '__main__':
dataset = seqDataset('train')