-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
106 lines (85 loc) · 3.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from __future__ import absolute_import, division
from visual_model_selector import ModelFactory
from configs import argHandler # Import the default arguments
from model_utils import get_optimizer, get_multilabel_class_weights, get_generator, get_class_weights
from tensorflow.keras import metrics
from tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, TensorBoard, CSVLogger
import os
from tensorflow.keras.models import load_model
from augmenter import augmenter
from auroc import MultipleClassAUROC
import json
FLAGS = argHandler()
FLAGS.setDefaults()
model_factory = ModelFactory()
# load training and test set file names
train_generator = get_generator(FLAGS.train_csv,FLAGS, augmenter)
test_generator = get_generator(FLAGS.test_csv, FLAGS)
class_weights = None
if FLAGS.use_class_balancing:
if FLAGS.multi_label_classification:
class_weights = get_multilabel_class_weights(train_generator.y, FLAGS.positive_weights_multiply)
else:
class_weights = get_class_weights(train_generator.get_class_counts(), FLAGS.positive_weights_multiply)
# load classifier from saved weights or get a new one
training_stats = {}
learning_rate = FLAGS.learning_rate
if FLAGS.load_model_path != '' and FLAGS.load_model_path is not None:
visual_model = load_model(FLAGS.load_model_path)
if FLAGS.show_model_summary:
visual_model.summary()
training_stats_file = os.path.join(FLAGS.save_model_path, ".training_stats.json")
if os.path.isfile(training_stats_file):
training_stats = json.load(open(training_stats_file))
learning_rate = training_stats['lr']
print("Will continue from learning rate: {}".format(learning_rate))
else:
visual_model = model_factory.get_model(FLAGS)
opt = get_optimizer(FLAGS.optimizer_type, learning_rate)
if FLAGS.multi_label_classification:
visual_model.compile(loss='binary_crossentropy', optimizer=opt,
metrics=[metrics.BinaryAccuracy(threshold=FLAGS.multilabel_threshold)])
else:
visual_model.compile(loss='sparse_categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
training_stats_file = {}
try:
os.makedirs(FLAGS.save_model_path)
except:
print("path already exists")
with open(os.path.join(FLAGS.save_model_path,'configs.json'), 'w') as fp:
json.dump(FLAGS, fp, indent=4)
callbacks = [
ReduceLROnPlateau(monitor='val_loss', factor=FLAGS.learning_rate_decay_factor,
patience=FLAGS.reduce_lr_patience,
verbose=1, mode="min", min_lr=FLAGS.minimum_learning_rate),
TensorBoard(log_dir=os.path.join(FLAGS.save_model_path, "logs"), batch_size=FLAGS.batch_size)
]
if FLAGS.multi_label_classification:
checkpoint = ModelCheckpoint(os.path.join(FLAGS.save_model_path, 'latest_model.hdf5'),
verbose=1)
auroc = MultipleClassAUROC(
sequence=test_generator,
class_names=FLAGS.classes,
weights_path=os.path.join(FLAGS.save_model_path, 'latest_model.hdf5'),
output_weights_path=os.path.join(FLAGS.save_model_path, 'best_model.hdf5'),
confidence_thresh=FLAGS.multilabel_threshold,
stats=training_stats,
workers=FLAGS.generator_workers,
)
callbacks.extend([checkpoint,auroc])
else:
checkpoint = ModelCheckpoint(os.path.join(FLAGS.save_model_path, 'best_model.hdf5'), monitor='val_accuracy',
save_best_only=True, save_weights_only=False, mode='max', verbose=1)
callbacks.extend([CSVLogger(os.path.join(FLAGS.save_model_path,'training_log.csv')), checkpoint])
visual_model.fit(
train_generator,
steps_per_epoch=train_generator.steps,
epochs=FLAGS.num_epochs,
validation_data=test_generator,
validation_steps=test_generator.steps,
workers=FLAGS.generator_workers,
callbacks=callbacks,
max_queue_size=FLAGS.generator_queue_length,
class_weight=class_weights,
shuffle=False
)