forked from fozouni/data_science
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode session 16 Pandas.py
109 lines (43 loc) · 1.17 KB
/
code session 16 Pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/env python
# coding: utf-8
# # Filter DataFrame with More than One Condition (AND - &)
# In[1]:
import pandas as pd
# In[2]:
df=pd.read_csv("employees.csv",parse_dates=["Start Date","Last Login Time"])
df["Senior Management"]=df["Senior Management"].astype("bool")
df["Gender"]=df["Gender"].astype("category")
df.head(3)
# In[5]:
mask=df["Gender"] == "Male"
df[mask]
# In[6]:
df["Team"] == "Marketing"
# In[9]:
mask1 = df["Gender"] == "Male"
mask2 = df["Team"] == "Marketing"
# In[7]:
mask1 = df["Gender"] == "Male"
df[mask1]
# In[10]:
df [mask1 & mask2]
# # Filter DataFrame with More than One Condition (OR - )
# In[11]:
df=pd.read_csv("employees.csv",parse_dates=["Start Date","Last Login Time"])
df["Senior Management"]=df["Senior Management"].astype("bool")
df["Gender"]=df["Gender"].astype("category")
df.head(3)
# In[12]:
mask1 = df["Senior Management"]
mask2 = df["Start Date"] < "1990-01-01"
# In[13]:
df[mask1 | mask2]
# In[16]:
mask1 = df["First Name"] == "Robert"
mask2 = df["Team"] == "Client Services"
mask3 = df["Start Date"] > "2016-06-01"
df[(mask1 & mask2) | mask3]
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]: