-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.html
608 lines (577 loc) · 28.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta name=viewport content=“width=800”>
<meta name="generator" content="HTML Tidy for Linux/x86 (vers 11 February 2007), see www.w3.org">
<title>Omry Sendik</title>
<style type="text/css">
/* Color scheme stolen from Sergey Karayev */
a {
color: #1772d0;
text-decoration:none;
}
a:focus, a:hover {
color: #f09228;
text-decoration:none;
}
body,td,th,tr,p,a {
font-family: 'Lato', Verdana, Helvetica, sans-serif;
font-size: 14px
}
strong {
font-family: 'Lato', Verdana, Helvetica, sans-serif;
font-size: 14px;
}
heading {
font-family: 'Lato', Verdana, Helvetica, sans-serif;
font-size: 22px;
}
papertitle {
font-family: 'Lato', Verdana, Helvetica, sans-serif;
font-size: 14px;
font-weight: 700
}
name {
font-family: 'Lato', Verdana, Helvetica, sans-serif;
font-size: 32px;
}
.one
{
width: 180px;
height: 180px;
position: relative;
}
.two
{
width: 180px;
height: 180px;
position: absolute;
transition: opacity .2s ease-in-out;
-moz-transition: opacity .2s ease-in-out;
-webkit-transition: opacity .2s ease-in-out;
}
.fade {
transition: opacity .2s ease-in-out;
-moz-transition: opacity .2s ease-in-out;
-webkit-transition: opacity .2s ease-in-out;
}
span.highlight {
background-color: #ffffd0;
}
</style>
<link rel="icon" type="image/png" href="favicon.ico">
<title>Roey Mechrez</title>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href='http://fonts.googleapis.com/css?family=Lato:400,700,400italic,700italic' rel='stylesheet' type='text/css'>
</head>
<body>
<table width="800" border="0" align="center" cellspacing="0" cellpadding="0">
<tr>
<td>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="20">
<tr>
<td width="67%" valign="middle">
<p align="center">
<name>Omry Sendik</name>
</p>
<p align="justify">
I am currently a Co-Founder and CTO in an InsurTech startup, where I lead a group of engineers.
For the past decade or so, I was affiliated with Samsung. In my last position, I was head of the automotive algorithms group (roughly 40 team mates) who worked on ISP, CV and ML algorithms.
I completed my PhD in the school of Computer Science of Tel-Aviv University, under the joint supervision of Prof. Daniel Cohen-Or and Prof. Dani Lischinski. My dissertation focused on Image Synthesis through weak supervision, by employing Neural Networks. I completed my MSc in the school of Electrical Engineering of Tel-Aviv University, where I was supervised by Prof. Hagit Messer Yaron. My thesis was in the sampling theory realm. Prior to that, I obtained a BSc in Electrical Engineering and a BA in Physics both at the Technion.
Finally, I am a proud (yet often absent) father.
</p>
<p align=center>
<a href="mailto:omrysendik@gmail.com"><img style="width: 25px" src="Email.png"></a>
<a href="https://twitter.com/OmrySendik"> <img style="width: 25px" src="TwitterIcon.png"></a>
<!--<a href="RoeyMechrez-bio.txt"> Bio /</a>-->
<a href="https://scholar.google.co.il/citations?user=HLtKby8AAAAJ&hl=en"> <img style="width: 25px" src="GoogleScholarIcon.jpg"></a>
<a href="https://www.linkedin.com/in/omrysendik/"> <img style="width: 25px" src="LinkedinIcon.png"></a>
<a href="https://github.com/omrysendik"> <img style="width: 25px" src="GithubIcon.png"> </a>
</p>
</td>
<td width="33%">
<img src="OS.jpeg" width="90%" height="90%">
</td>
</tr>
</table>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="20">
<tr>
<td width="100%" valign="middle">
<heading>News</heading>
<p>
6/3/20 - Presenting Unsupervised-k-modal-styled-content-generation in Berkeley
<br>
4/3/20 - Won the WACV Doctoral Travel Grant
<br>
2/3/20 - Presenting Unsupervised-k-modal-styled-content-generation in Stanford
</p>
<heading>Research</heading>
<p>
I'm interested in Computer Vision, Machine Learning, Generative Models and Image Processing
</p>
</td>
</tr>
</table>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="10">
<!--=================Paper UMMGAN ==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffd0">
<td width="25%">
<div class="one">
<div class="two" id = 'UMMGAN_image'><img style="width: 180px" src='UMMGAN.png'></div>
<img style="width: 180px" src='UMMGAN.png'>
</div>
<script type="text/javascript">
function UMMGAN_start() {
document.getElementById('UMMGAN_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('UMMGAN_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://arxiv.org/abs/2001.03640">
<papertitle>Unsupervised K-Modal Styled Content Generation</papertitle></a><br>
<strong>Omry Sendik</strong>, Dani Lischinski and Daniel Cohen-Or
<br>
<em>ACM Transactions on Graphics 2020</em> <br>
<br>
<p></p>
<p>We introduce uMM-GAN, a novel architecture designed to better model multi-modal distributions, in an unsupervised fashion. Building upon the StyleGAN architecture, our network learns multiple modes, in a completely unsupervised manner, and combines them using a set of learned weights. We demonstrate that this approach is capable of effectively approximating a complex distribution as a superposition of multiple simple ones. We further show that uMM-GAN effectively disentangles between modes and style, thereby providing an independent degree of control over the generated content.</p>
</td>
</tr>
<!--=================Paper DeepAge==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffe0">
<td width="25%">
<div class="one">
<div class="two" id = 'DeepAge_image'><img style="width: 180px" src='DeepAge.png'></div>
<img style="width: 180px" src='DeepAge.png'>
</div>
<script type="text/javascript">
function DeepAge_start() {
document.getElementById('DeepAge_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('DeepAge_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://www.dropbox.com/s/vhepdd27f730k8r/deep_age_paper_twocol_v5.pdf?dl=0">
<papertitle>DeepAge: Deep Learning of face-based age estimation</papertitle></a><br>
<strong>Omry Sendik</strong>, Yossi Keller
<br>
<em>Signal Processing: Image Communication 78 (2019)</em> <br>
<br>
<p></p>
<p>We present a dual Convolutional Neural Network (CNN) and Support Vector Regression (SVR) approach for face-based age estimation. A CNN is trained for representation learning, followed by Metric Learning, after which SVR is applied to the learned features. This allows to overcome the lack of large datasets with age annotations, by initially training the CNN for face recognition.</p>
</td>
</tr>
<!--=================Paper CrossNet==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffd0">
<td width="25%">
<div class="one">
<div class="two" id = 'CrossNet_image'><img style="width: 180px" src='CrossNet.png'></div>
<img style="width: 180px" src='CrossNet.png'>
</div>
<script type="text/javascript">
function CrossNet_start() {
document.getElementById('CrossNet_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('CrossNet_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="http://openaccess.thecvf.com/content_WACV_2020/papers/Sendik_CrossNet_Latent_Cross-Consistency_for_Unpaired_Image_Translation_WACV_2020_paper.pdf">
<papertitle>CrossNet: Latent Cross-Consistency for Unpaired Image Translation</papertitle></a><br>
<strong>Omry Sendik</strong>, Dani Lischinski and Daniel Cohen-Or
<br>
<em>The IEEE Winter Conference on Applications of Computer Vision 2019 (WACV)</em> <br>
<br>
<p></p>
<p>We introduce a novel architecture for un-paired image translation, and explore several new regularizers enabled by it. Specifically, our architecture comprises a pair of GANs, as well as a pair of translators between their respective latent spaces. These cross-translators enable us to impose several regularizing constraints on the learnt image translation operator, collectively referred to as latent cross-consistency.</p>
</td>
</tr>
<!--=================Paper IMNet==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffe0">
<td width="25%">
<div class="one">
<div class="two" id = 'IMNet_image'><img style="width: 180px" src='IMNet.png'></div>
<img style="width: 180px" src='IMNet.png'>
</div>
<script type="text/javascript">
function IMNet_start() {
document.getElementById('IMNet_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('IMNet_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://www.dropbox.com/s/3nen3v68xve9h5b/IM_Net_paper_submission_CVPR19.pdf?dl=0">
<papertitle>IM-Net for High Resolution Video Frame Interpolation</papertitle></a><br>
Tomer Peleg, Pablo Szekely, Doron Sabo and <strong>Omry Sendik</strong>
<br>
<em>CVPR 2019</em> <br>
<br>
<p></p>
<p>In this paper we propose IM-Net: an interpolated motion neural network. We used an economic structured architecture and end-to-end training with multi-scale tailored losses. In particular, we formulate interpolated motion estimation as classification rather than regression. IM-Net out-performs previous methods by more than 1.3dB (PSNR) ona high resolution version of the recently introduced Vimeo triplet dataset. Moreover, the network runs in less than 33msec on a single GPU for HD resolution.</p>
</td>
</tr>
<!--=================Paper WhatsInAFace==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffd0">
<td width="25%">
<div class="one">
<div class="two" id = 'WhatsInAFace_image'><img style="width: 180px" src='WhatsInAFace.png'></div>
<img style="width: 180px" src='WhatsInAFace.png'>
</div>
<script type="text/javascript">
function WhatsInAFace_start() {
document.getElementById('WhatsInAFace_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('WhatsInAFace_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://www.dropbox.com/s/3fb1jdgnpb7jjy9/EG19_Whats_in_a_Face.pdf?dl=0">
<papertitle>What's in a Face? Metric Learning for Face Characterization</papertitle></a><br>
<strong>Omry Sendik</strong>, Dani Lischinski and Daniel Cohen-Or
<br>
<em>Euro Graphics 2019</em> <br>
<br>
<p></p>
<p>We present a method for determining which facial parts (mouth, nose, etc.) best characterize an individual, given a set of that individual’s portraits. We introduce a novel distinctiveness analysis of a set of portraits, which leverages the deep features extracted by a pre-trained face recognition CNN and a hair segmentation FCN, in the context of a weakly supervised metric learning scheme. Our analysis enables the generation of a polarized class activation map (PCAM) for an individual’s portrait via a transformation that localizes and amplifies the discriminative regions of the deep feature maps extracted by the aforementioned networks. A user study that we conducted shows that there is a surprisingly good agreement between the face parts that users indicate as characteristic and the face parts automatically selected by our method. We demonstrate a few applications of our method, including determining the most and the least representative portraits among a set of portraits of an individual, and the creation of facial hybrids: portraits that combine the characteristic recognizable facial features of two individuals. Our face characterization analysis is also effective for ranking portraits in order to find an individual’s look-alikes (Doppelgängers).</p>
</td>
</tr>
<!--=================Paper Moist==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffe0">
<td width="25%">
<div class="one">
<div class="two" id = 'Moist_image'><img style="width: 180px" src='Moisture.png'></div>
<img style="width: 180px" src='Moisture.png'>
</div>
<script type="text/javascript">
function Moist_start() {
document.getElementById('Moist_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('Moist_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://arxiv.org/abs/1806.00833">
<papertitle>Analyzing the ability to reconstruct the moisture field using commercial microwave network data</papertitle></a><br>
Noam David, <strong>Omry Sendik</strong>, Hagit Messer, Huaizhu Oliver Gao, Yoav Rubin, Dorita Rostkier-Edelstein, Pinhas Alpert
<br>
<em>Atmospheric Research</em> <br>
<br>
<p></p>
<p>This study demonstrates for the first time the potential to reconstruct the 2-Dimensional humidity field using commercial microwave links which form the infrastructure for data transmission in cellular networks. Water vapor attenuates the waves transmitted by the system and thus these microwave links can potentially form as a virtual network for monitoring the humidity field. The results show a correlation of between 0.6 and 0.92 with root mean square differences ranging from 1.9 to 4.15 gr/m^3 between conventional humidity gauges and the humidity estimates calculated for the same points in space by the proposed technology. The results obtained are the first to point out the improved performance of humidity measurements when using data from multiple microwave links. These results indicate the tremendous potential of this novel approach for improving the initialization of meteorological forecasting models thus potentially improving the ability to cope with the dangers associated with extreme weather.</p>
</td>
</tr>
<!--=================Paper Correlations==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffd0">
<td width="25%">
<div class="one">
<div class="two" id = 'Correlations_image'><img style="width: 180px" src='Correlations.png'></div>
<img style="width: 180px" src='Correlations.png'>
</div>
<script type="text/javascript">
function Correlations_start() {
document.getElementById('Correlations_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('Correlations_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://dl.acm.org/doi/pdf/10.1145/3015461">
<papertitle>Deep Correlations for Texture synthesis</papertitle></a><br>
<strong>Omry Sendik</strong> and Daniel Cohen-Or
<br>
<em>ACM Transactions on Graphics, 2017</em> <br>
<br>
<p></p>
<p>We introduce a structural energy, based on correlations among deep features, which capture the self-similarities and regularities characterizing the texture. Specifically, we show that our technique can synthesize textures that have structures of various scales, local and nonlocal, and the combination of the two.</p>
</td>
</tr>
<!--=================Paper Survey==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffe0">
<td width="25%">
<div class="one">
<div class="two" id = 'Survey_image'><img style="width: 180px" src='Survey.png'></div>
<img style="width: 180px" src='Survey.png'>
</div>
<script type="text/javascript">
function Survey_start() {
document.getElementById('Survey_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('Survey_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://b91c0d12-0404-434f-8960-b62c985d23bd.filesusr.com/ugd/b1fe6d_e3d705b7f5ac48e8a5ce841faa799128.pdf">
<papertitle>A New Approach to Precipitation Monitoring: A critical survey of existing technologies and challenges</papertitle></a><br>
<strong>Omry Sendik</strong> and Hagit Messer
<br>
<em>IEEE Signal Processing Magazine, 2015</em> <br>
<br>
<p></p>
<p>The goal of this article is to present a critical survey of the existing papers and works on this topic. We emphasize the works relating this topic to multidimensional signal processing. The importance of precipitation (rain, sleet, hail, snow, and any other outcomes of the condensation of water vapor that falls by virtue of gravity) is clear to any layman. Whether it is required for the purpose of precisely measuring past precipitation quantities or for generating future predictions, monitoring such phenomena has been of inter-est to humankind since early biblical days.</p>
</td>
</tr>
<!--=================Paper Reconst==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffd0">
<td width="25%">
<div class="one">
<div class="two" id = 'Reconst_image'><img style="width: 180px" src='Reconst.png'></div>
<img style="width: 180px" src='Reconst.png'>
</div>
<script type="text/javascript">
function Reconst_start() {
document.getElementById('Reconst_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('Reconst_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://b91c0d12-0404-434f-8960-b62c985d23bd.filesusr.com/ugd/b1fe6d_64b8771cb1e04b3cba34c268e4a7e31b.pdf">
<papertitle>On the Reconstructability of Images Sampled by Random Line Projections</papertitle></a><br>
<strong>Omry Sendik</strong>and Hagit Messer
<br>
<em>IEEE Conference, 2012</em> <br>
<br>
<p></p>
<p>This paper addresses the problem of sampling a two dimensional function (an image) by projections along lines with an arbitrary geometry. By usage of the Papoulis Generalized Sampling Expansion theorem, and addressing the problem of missing samples, we are able to state, for any given sampling realization, which sampling schemes will yield reconstructable images and what sampling (Nyquist) frequency is required for this realization. Finally, we apply this technique on two examples, and demonstrate that with certain geometries the function is reconstructable, while with others it is not.</p>
</td>
</tr>
<!--=================Paper Cell==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffe0">
<td width="25%">
<div class="one">
<div class="two" id = 'Cell_image'><img style="width: 180px" src='Cell.png'></div>
<img style="width: 180px" src='Cell.png'>
</div>
<script type="text/javascript">
function Cell_start() {
document.getElementById('Cell_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('Cell_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://b91c0d12-0404-434f-8960-b62c985d23bd.filesusr.com/ugd/b1fe6d_4530a94569e2432aab65952a82813094.pdf">
<papertitle>Cellular network infrastructure- the future of fog monitoring?</papertitle></a><br>
Noam David, <strong>Omry Sendik</strong>, Hagit Messer and Pinhas Alpert
<br>
<em>Bulletin of the American Meteorological Society, December 2014</em> <br>
<br>
<p></p>
<p>In this paper, a theoretical simulation is presented in which simulated fog patches are introduced into an area where a network of links is deployed. Two-dimensional maps are generated utilizing the simulated microwave network to represent sensitivity thresholds for fog detection at three different frequencies: 20, 38, and 80 GHz. Real-data measurements of fog are also demonstrated using 38-GHz band links. The results indicate the vast future potential of commercial microwave links as an opportunistic system for monitoring fog.</p>
</td>
</tr>
<!--=================Paper Acheiv==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffd0">
<td width="25%">
<div class="one">
<div class="two" id = 'Acheivable_image'><img style="width: 180px" src='Acheivable.png'></div>
<img style="width: 180px" src='Acheivable.png'>
</div>
<script type="text/javascript">
function Acheivable_start() {
document.getElementById('Acheivable_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('Acheivable_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://b91c0d12-0404-434f-8960-b62c985d23bd.filesusr.com/ugd/b1fe6d_d447594f9ace41a8a7ccbc085688f8bc.pdf">
<papertitle>On the achievable coverage of rain field mapping using measurements from a given set of microwave links</papertitle></a><br>
<strong>Omry Sendik</strong> and Hagit Messer
<br>
<em>IEEE Conference, 2014</em> <br>
<br>
<p></p>
<p>In this paper we discuss the different problem, of detecting rain fields, using measurements from a given set of microwave links. By considering the process in which the CWN data is provided, and by exploiting the power law which describes the relation between the microwave signal attenuation and the rain rate per km, we develop an algorithm which generates maps depicting the minimal detectable rain rate.</p>
</td>
</tr>
<!--=================Paper CMOS==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffe0">
<td width="25%">
<div class="one">
<div class="two" id = 'CMOS_image'><img style="width: 180px" src='CMOS.png'></div>
<img style="width: 180px" src='CMOS.png'>
</div>
<script type="text/javascript">
function CMOS_start() {
document.getElementById('CMOS_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('CMOS_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://ieeexplore.ieee.org/document/5438821">
<papertitle>A 90-nm CMOS Power Amplifier for 802.16e (WiMAX) Applications</papertitle></a><br>
Ofir Degani, Fabian Cossoy, Shay Shahaf, Emanuel Cohen, Vladimir Kravtsov, <strong>Omry Sendik</strong>, Debopriyo Chowdhury, Christopher D Hull and Shmuel Ravid
<br>
<em>IEEE Transactions on Microwave Theory and Techniques, 2010</em> <br>
<br>
<p></p>
<p>We demonstrate a single-stage 90-nm CMOS power amplifier (PA) for 2.3-2.7-GHz WiMAX (802.16e) band applications.</p>
</td>
</tr>
<!------------------------------------------------/!-->
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="20">
<tr>
<td>
<heading>Academics</heading>
</td>
</tr>
</table>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="10">
<!--=================PhD ==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffd0">
<td width="25%">
<div class="one">
<div class="two" id = 'PhD_image'><img style="width: 180px" src='PhD.png'></div>
<img style="width: 180px" src='PhD.png'>
</div>
<script type="text/javascript">
function PhD_start() {
document.getElementById('PhD_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('PhD_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://www.dropbox.com/s/law1b74gv3qd238/Dissertation_Subm.pdf?dl=0">
<papertitle>Image synthesis through weak supervision</papertitle></a><br>
<strong>Omry Sendik</strong>
<br>
<em>PhD</em> <br>
<br>
<p></p>
<p>...</p>
</td>
</tr>
<!--=================MSc ==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffd0">
<td width="25%">
<div class="one">
<div class="two" id = 'MSc_image'><img style="width: 180px" src='MSc.png'></div>
<img style="width: 180px" src='MSc.png'>
</div>
<script type="text/javascript">
function MSc_start() {
document.getElementById('MSc_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('MSc_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://b91c0d12-0404-434f-8960-b62c985d23bd.filesusr.com/ugd/b1fe6d_f7b9ea24ef8d40508fab021af73d9087.pdf">
<papertitle>On the Coverage and Reconstructability of 2D Functions Sampled by Arbitrary Line Projections with an Application to Rain Field Mapping</papertitle></a><br>
<strong>Omry Sendik</strong>
<br>
<em>MSc</em> <br>
<br>
<p></p>
<p>...</p>
</td>
</tr>
<!--=================BSc ==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffd0">
<td width="25%">
<div class="one">
<div class="two" id = 'BSc_image'><img style="width: 180px" src='BSc.png'></div>
<img style="width: 180px" src='BSc.png'>
</div>
<script type="text/javascript">
function BSc_start() {
document.getElementById('BSc_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('BSc_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://b91c0d12-0404-434f-8960-b62c985d23bd.filesusr.com/ugd/b1fe6d_bdfdce08898649529b7c10616e5109d1.pdf">
<papertitle>Speech Enhancement Employing Discrete Modulation Transforms</papertitle></a><br>
<strong>Omry Sendik</strong>
<br>
<em>BSc</em> <br>
<br>
<p></p>
<p>...</p>
</td>
</tr>
<!--=================Anal Mech ==========================-->
<tr onmouseout="TTT_stop()" onmouseover="ttt_start()" bgcolor="#ffffd0">
<td width="25%">
<div class="one">
<div class="two" id = 'AnalMech_image'><img style="width: 180px" src='AnalMech.png'></div>
<img style="width: 180px" src='AnalMech.png'>
</div>
<script type="text/javascript">
function AnalMech_start() {
document.getElementById('AnalMech_image').style.opacity = "1";
}
function ttt_stop() {
document.getElementById('AnalMech_image').style.opacity = "0";
}
ttt_stop()
</script>
</td>
<td valign="top" width="75%">
<p><a href="https://b91c0d12-0404-434f-8960-b62c985d23bd.filesusr.com/ugd/b1fe6d_92b1c5ea761a4978a5d51a698c547ef3.pdf">
<papertitle>Analytical Mechanics</papertitle></a><br>
<strong>Omry Sendik</strong>
<br>
<em>...</em> <br>
<br>
<p></p>
<p>...</p>
</td>
</tr>
</td>
</tr>
</table>
</body>
</html>