-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathlabel_distillation_or2.py
959 lines (818 loc) · 39.8 KB
/
label_distillation_or2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
# code structure inspired by https://github.com/dyhan0920/PyramidNet-PyTorch/blob/master/train.py
import argparse
import copy
import json
import os
import shutil
import time
import warnings
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
import tqdm
import model_architectures as M
from arg_extractor import get_args
from data_providers import K49Dataset
warnings.filterwarnings("ignore")
def main():
global args, best_err1, device, num_classes
args = get_args()
torch.manual_seed(args.random_seed)
# most cases have 10 classes
# if there are more, then it will be reassigned
num_classes = 10
best_err1 = 100
# define datasets
if args.target == "mnist":
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_set_all = datasets.MNIST(
'data', train=True, transform=transform_train, target_transform=None, download=True)
# set aside 10000 examples from the training set for validation
train_set, val_set = torch.utils.data.random_split(
train_set_all, [50000, 10000])
# if we do experiments with variable target set size, this will take care of it
# by default the target set size is 50000
target_set_size = min(50000, args.target_set_size)
train_set, _ = torch.utils.data.random_split(
train_set, [target_set_size, 50000 - target_set_size])
test_set = datasets.MNIST(
'data', train=False, transform=transform_test, target_transform=None, download=True)
elif args.target == "kmnist":
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_set_all = datasets.KMNIST(
'data', train=True, transform=transform_train, target_transform=None, download=True)
# set aside 10000 examples from the training set for validation
train_set, val_set = torch.utils.data.random_split(
train_set_all, [50000, 10000])
target_set_size = min(50000, args.target_set_size)
# if we do experiments with variable target set size, this will take care of it
train_set, _ = torch.utils.data.random_split(
train_set, [target_set_size, 50000 - target_set_size])
test_set = datasets.KMNIST(
'data', train=False, transform=transform_test, target_transform=None, download=True)
elif args.target == "k49":
num_classes = 49
train_images = np.load('./data/k49-train-imgs.npz')['arr_0']
test_images = np.load('./data/k49-test-imgs.npz')['arr_0']
train_labels = np.load('./data/k49-train-labels.npz')['arr_0']
test_labels = np.load('./data/k49-test-labels.npz')['arr_0']
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# set aside about 10% of training data for validation
train_set_all = K49Dataset(
train_images, train_labels, transform=transform_train)
train_set, val_set = torch.utils.data.random_split(
train_set_all, [209128, 23237])
# currently we do not support variable target set size for k49
# enable this to use it
# target_set_size = min(209128, args.target_set_size)
# train_set, _ = torch.utils.data.random_split(
# train_set, [target_set_size, 209128 - target_set_size])
test_set = K49Dataset(
test_images, test_labels, transform=transform_test)
elif args.target == "cifar10":
normalize = transforms.Normalize(
mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
transform_train = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
normalize
])
transform_test = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
normalize
])
train_set_all = datasets.CIFAR10(
'data', train=True, transform=transform_train, target_transform=None, download=True)
# set aside 5000 examples from the training set for validation
train_set, val_set = torch.utils.data.random_split(
train_set_all, [45000, 5000])
# if we do experiments with variable target set size, this will take care of it
target_set_size = min(45000, args.target_set_size)
train_set, _ = torch.utils.data.random_split(
train_set, [target_set_size, 45000 - target_set_size])
test_set = datasets.CIFAR10(
'data', train=False, transform=transform_test, target_transform=None, download=True)
elif args.target == "cifar100":
num_classes = 100
normalize = transforms.Normalize(
mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
transform_train = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
normalize
])
transform_test = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
normalize
])
train_set_all = datasets.CIFAR100(
'data', train=True, transform=transform_train, target_transform=None, download=True)
# set aside 5000 examples from the training set for validation
train_set, val_set = torch.utils.data.random_split(
train_set_all, [45000, 5000])
# if we do experiments with variable target set size, this will take care of it
target_set_size = min(45000, args.target_set_size)
train_set, _ = torch.utils.data.random_split(
train_set, [target_set_size, 45000 - target_set_size])
test_set = datasets.CIFAR100(
'data', train=False, transform=transform_test, target_transform=None, download=True)
# create data loaders
if args.baseline:
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.num_base_examples, shuffle=True)
else:
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(
val_set, batch_size=args.batch_size, shuffle=False)
test_loader = torch.utils.data.DataLoader(
test_set, batch_size=args.batch_size, shuffle=False)
# create data loaders to get base examples
if args.source == "emnist":
train_set_source = datasets.EMNIST(
'data', 'letters', train=True, download=True, transform=transform_train, target_transform=None)
train_loader_source = torch.utils.data.DataLoader(
train_set_source, batch_size=args.num_base_examples, shuffle=True)
elif args.source == "mnist":
train_set_source = datasets.MNIST(
'data', train=True, download=True, transform=transform_train, target_transform=None)
train_loader_source = torch.utils.data.DataLoader(
train_set_source, batch_size=args.num_base_examples, shuffle=True)
elif args.source == "kmnist":
train_set_source = datasets.KMNIST(
'data', train=True, download=True, transform=transform_train, target_transform=None)
train_loader_source = torch.utils.data.DataLoader(
train_set_source, batch_size=args.num_base_examples, shuffle=True)
elif args.source == "cifar10":
train_set_source = datasets.CIFAR10(
'data', train=True, download=True, transform=transform_train, target_transform=None)
train_loader_source = torch.utils.data.DataLoader(
train_set_source, batch_size=args.num_base_examples, shuffle=True)
elif args.source == "cifar100":
train_set_source = datasets.CIFAR100(
'data', train=True, download=True, transform=transform_train, target_transform=None)
train_loader_source = torch.utils.data.DataLoader(
train_set_source, batch_size=args.num_base_examples, shuffle=True)
elif args.source == "svhn":
train_set_source = datasets.SVHN(
'data', split='train', download=True, transform=transform_train, target_transform=None)
train_loader_source = torch.utils.data.DataLoader(
train_set_source, batch_size=args.num_base_examples, shuffle=True)
elif args.source == "cub":
# modify the root depending on where you place the images
cub_data_root = './data/CUB_200_2011/images'
train_set_source = datasets.ImageFolder(
cub_data_root, transform=transform_train, target_transform=None)
train_loader_source = torch.utils.data.DataLoader(
train_set_source, batch_size=args.num_base_examples, shuffle=True)
elif args.source == "fake":
# there is also an option to use random noise base examples
if args.target == "mnist":
num_channels = 1
dims = 28
else:
num_channels = 3
dims = 32
train_set_source = datasets.FakeData(size=5000, image_size=(
num_channels, dims, dims), num_classes=10, transform=transform_train, target_transform=None, random_offset=0)
train_loader_source = torch.utils.data.DataLoader(
train_set_source, batch_size=args.num_base_examples, shuffle=True)
else:
# get the fixed images from the same dataset as the training data
train_set_source = train_set
train_loader_source = torch.utils.data.DataLoader(
train_set_source, batch_size=args.num_base_examples, shuffle=True)
if torch.cuda.is_available(): # checks whether a cuda gpu is available
device = torch.cuda.current_device()
print("use GPU", device)
print("GPU ID {}".format(torch.cuda.current_device()))
else:
print("use CPU")
device = torch.device('cpu') # sets the device to be CPU
train_loader_source_iter = iter(train_loader_source)
if args.balanced_source:
# use a balanced set of fixed examples - same number of examples per class
class_counts = {}
fixed_input = []
fixed_target = []
for batch_fixed_i, batch_fixed_t in train_loader_source_iter:
if sum(class_counts.values()) >= args.num_base_examples:
break
for fixed_i, fixed_t in zip(batch_fixed_i, batch_fixed_t):
if len(class_counts.keys()) < num_classes:
if int(fixed_t) in class_counts:
if class_counts[int(fixed_t)] < args.num_base_examples // num_classes:
class_counts[int(fixed_t)] += 1
fixed_input.append(fixed_i)
fixed_target.append(int(fixed_t))
else:
class_counts[int(int(fixed_t))] = 1
fixed_input.append(fixed_i)
fixed_target.append(int(fixed_t))
else:
if int(fixed_t) in class_counts:
if class_counts[int(fixed_t)] < args.num_base_examples // num_classes:
class_counts[int(fixed_t)] += 1
fixed_input.append(fixed_i)
fixed_target.append(int(fixed_t))
fixed_input = torch.stack(fixed_input).to(device=device)
fixed_target = torch.Tensor(fixed_target).to(device=device)
else:
# used for cross-dataset scenario - random selection of classes
# not taking into accound the original classes
fixed_input, fixed_target = next(train_loader_source_iter)
fixed_input = fixed_input.to(device=device)
fixed_target = fixed_target.to(device=device)
# define loss function (criterion)
criterion = nn.CrossEntropyLoss().to(device=device)
# start at uniform labels and then learn them
labels = torch.zeros((args.num_base_examples, num_classes),
requires_grad=True, device=device)
labels = labels.new_tensor([[float(1.0 / num_classes) for e in range(num_classes)] for i in range(
args.num_base_examples)], requires_grad=True, device=device)
# define an optimizer for labels
labels_opt = torch.optim.Adam([labels])
# enable using meta-architectures for second-order meta-learning
# allows assigning fast weights
cudnn.benchmark = True
M.LeNetMeta.meta = True
M.AlexCifarNetMeta.meta = True
M.BasicBlockMeta.meta = True
M.BottleneckMeta.meta = True
M.ResNetMeta.meta = True
# define the models to use
if args.target == "cifar10" or args.target == "cifar100":
if args.resnet:
model = M.ResNetMeta(dataset=args.target, depth=18, num_classes=num_classes,
bottleneck=False, device=device).to(device=device)
model_name = 'resnet'
else:
model = M.AlexCifarNetMeta(args).to(device=device)
model_name = 'alexnet'
else:
model = M.LeNetMeta(args).to(device=device)
model_name = 'LeNet'
optimizer = torch.optim.Adam(model.parameters())
if args.baseline:
create_json_experiment_log(fixed_target)
# remap the targets - only relevant in cross-dataset
fixed_target = remap_targets(fixed_target, num_classes)
# printing the labels helps ensure the seeds work
print('The labels of the fixed examples are')
print(fixed_target.tolist())
labels = one_hot(fixed_target.long(), num_classes)
# add smoothing to the baseline if selected
if args.label_smoothing > 0:
labels = create_smooth_labels(
labels, args.label_smoothing, num_classes)
# use the validation set to find a suitable number of iterations for training
num_baseline_steps, errors_list, num_steps_used = find_best_num_steps(
val_loader, criterion, fixed_input, labels)
print('Number of steps to use for the baseline: ' + str(num_baseline_steps))
experiment_update_dict = {'num_baseline_steps': num_baseline_steps,
'errors_list': errors_list,
'num_steps_used': num_steps_used}
update_json_experiment_log_dict(experiment_update_dict)
if args.test_various_models:
assert args.target == "cifar10", "test various models is only meant to be used for CIFAR-10"
model_name_list = ['alexnet', 'LeNet', 'resnet']
for model_name_test in model_name_list:
# do 20 repetitions of training from scratch
for test_i in range(20):
print('Test repetition ' + str(test_i))
test_err1, test_loss = test(
test_loader, model_name_test, criterion, fixed_input, labels, num_baseline_steps)
print('Test error (top-1 error):', test_err1)
experiment_update_dict = {'test_top_1_error_' + model_name_test: test_err1,
'test_loss_' + model_name_test: test_loss,
'num_test_steps_' + model_name_test: num_baseline_steps}
update_json_experiment_log_dict(experiment_update_dict)
else:
# do 20 repetitions of training from scratch
for test_i in range(20):
print('Test repetition ' + str(test_i))
test_err1, test_loss = test(
test_loader, model_name, criterion, fixed_input, labels, num_baseline_steps)
print('Test error (top-1 error):', test_err1)
experiment_update_dict = {'test_top_1_error': test_err1,
'test_loss': test_loss,
'num_test_steps': num_baseline_steps}
update_json_experiment_log_dict(experiment_update_dict)
else:
create_json_experiment_log(fixed_target)
# start measuring time
start_time = time.time()
# initialize variables to decide when to restart a model
ma_list = []
ma_sum = 0
lowest_ma_sum = 999999999
current_num_steps = 0
num_steps_list = []
num_steps_from_min = 0
val_err1 = 100.0
val_loss = 5.0
num_steps_val = 0
with tqdm.tqdm(total=args.epochs) as pbar_epochs:
for epoch in range(0, args.epochs):
train_err1, train_loss, labels, model_loss, ma_list, ma_sum, lowest_ma_sum, current_num_steps, num_steps_list, num_steps_from_min, model, optimizer = \
train(train_loader, model, fixed_input, labels, criterion, labels_opt, epoch, optimizer,
ma_list, ma_sum, lowest_ma_sum, current_num_steps, num_steps_list, num_steps_from_min)
# evaluate on the validation set only every 5 epochs as it can be quite expensive to train a new model from scratch
if epoch % 5 == 4:
# calculate the number of steps to use
if len(num_steps_list) == 0:
num_steps_val = current_num_steps
else:
num_steps_val = int(np.mean(num_steps_list[-3:]))
val_err1, val_loss = validate(
val_loader, model, criterion, epoch, fixed_input, labels, num_steps_val)
if val_err1 <= best_err1:
best_labels = labels.detach().clone()
best_num_steps = num_steps_val
best_err1 = min(val_err1, best_err1)
print('Current best val error (top-1 error):', best_err1)
pbar_epochs.update(1)
experiment_update_dict = {'train_top_1_error': train_err1,
'train_loss': train_loss,
'val_top_1_error': val_err1,
'val_loss': val_loss,
'model_loss': model_loss,
'epoch': epoch,
'num_val_steps': num_steps_val}
# save the best labels so that we can analyse them
if epoch == args.epochs - 1:
experiment_update_dict['labels'] = best_labels.tolist()
update_json_experiment_log_dict(experiment_update_dict)
print('Best val error (top-1 error):', best_err1)
# stop measuring time
experiment_update_dict = {'total_train_time': time.time() - start_time}
update_json_experiment_log_dict(experiment_update_dict)
# this does number of steps analysis - what happens if we do more or fewer steps for test training
if args.num_steps_analysis:
num_steps_add = [-50, -20, -10, 0, 10, 20, 50, 100]
for num_steps_add_item in num_steps_add:
# start measuring time for testing
start_time = time.time()
local_errs = []
local_losses = []
local_num_steps = best_num_steps + num_steps_add_item
print('Number of steps for training: ' + str(local_num_steps))
# each number of steps will have a robust estimate by using 20 repetitions
for test_i in range(20):
print('Test repetition ' + str(test_i))
test_err1, test_loss = test(
test_loader, model_name, criterion, fixed_input, best_labels, local_num_steps)
local_errs.append(test_err1)
local_losses.append(test_loss)
print('Test error (top-1 error):', test_err1)
experiment_update_dict = {'test_top_1_error': local_errs,
'test_loss': local_losses,
'total_test_time': time.time() - start_time,
'num_test_steps': local_num_steps}
update_json_experiment_log_dict(experiment_update_dict)
else:
if args.test_various_models:
assert args.target == "cifar10", "test various models is only meant to be used for CIFAR-10"
model_name_list = ['alexnet', 'LeNet', 'resnet']
for model_name_test in model_name_list:
for test_i in range(20):
print(model_name_test)
print('Test repetition ' + str(test_i))
test_err1, test_loss = test(
test_loader, model_name_test, criterion, fixed_input, best_labels, best_num_steps)
print('Test error (top-1 error):', test_err1)
experiment_update_dict = {'test_top_1_error_' + model_name_test: test_err1,
'test_loss_' + model_name_test: test_loss,
'total_test_time_' + model_name_test: time.time() - start_time,
'num_test_steps_' + model_name_test: best_num_steps}
update_json_experiment_log_dict(experiment_update_dict)
else:
for test_i in range(20):
print('Test repetition ' + str(test_i))
test_err1, test_loss = test(
test_loader, model_name, criterion, fixed_input, best_labels, best_num_steps)
print('Test error (top-1 error):', test_err1)
experiment_update_dict = {'test_top_1_error': test_err1,
'test_loss': test_loss,
'total_test_time': time.time() - start_time,
'num_test_steps': best_num_steps}
update_json_experiment_log_dict(experiment_update_dict)
def one_hot(indices, depth):
"""
Returns a one-hot tensor.
This is a PyTorch equivalent of Tensorflow's tf.one_hot.
Parameters:
indices: a (n_batch, m) Tensor or (m) Tensor.
depth: a scalar. Represents the depth of the one hot dimension.
Returns: a (n_batch, m, depth) Tensor or (m, depth) Tensor.
"""
encoded_indicies = torch.zeros(
indices.size() + torch.Size([depth])).to(device=device)
index = indices.view(indices.size() + torch.Size([1]))
encoded_indicies = encoded_indicies.scatter_(1, index, 1)
return encoded_indicies
def create_smooth_labels(labels, label_smoothing, num_classes):
labels = labels * (1.0 - label_smoothing)
labels = labels + label_smoothing / num_classes
return labels
def remap_targets(fixed_target, depth):
"""Only useful for cross-dataset scenarios - within dataset it does not remap it"""
if int(max(fixed_target)) < depth:
if args.source == "cifar10" or args.source == "cifar100" or args.source == "svhn":
return fixed_target
else:
return fixed_target.long()
else:
remapped_targets = []
mapping = {}
max_index = 0
for label in fixed_target:
if int(label) in mapping:
remapped_targets.append(mapping[int(label)])
else:
mapping[int(label)] = max_index
max_index += 1
remapped_targets.append(mapping[int(label)])
if max_index > depth:
raise('Too many labels to remap')
return torch.Tensor(remapped_targets).long().to(device=device)
def train(train_loader, model, fixed_input, labels, criterion, labels_opt, epoch, optimizer,
ma_list, ma_sum, lowest_ma_sum, current_num_steps, num_steps_list, num_steps_from_min):
"""
Do one epoch of training the synthetic labels.
Parameters ma_list, ma_sum, lowest_ma_sum, current_num_steps, num_steps_list, num_steps_from_min
are used for keeping track of statistics for model resets across epochs.
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
model_losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
# define over how many steps to calculate the moving average
# for resetting the model and also how many steps to wait
# we use the same value for both
if args.target == "cifar100" or args.target == "k49":
stats_gap = 100
elif args.num_base_examples > 100:
stats_gap = 200
else:
stats_gap = 50
for i, (input_, target) in enumerate(train_loader):
# sampled a minibatch of n_o target dataset examples x_t' with labels y_t'
# measure data loading time
data_time.update(time.time() - end)
input_ = input_.to(device=device)
target = target.to(device=device)
# sample a minibatch of n_i base examples from x~, y~: x~', y~'
perm = torch.randperm(fixed_input.size(0))
idx = perm[:args.inner_batch_size]
fi_i = fixed_input[idx]
lb_i = labels[idx]
# inner loop
for weight in model.parameters():
weight.fast = None
fi_o = model(fi_i)
loss = soft_cross_entropy(fi_o, lb_i)
optimizer.zero_grad()
grad = torch.autograd.grad(loss, model.parameters(), create_graph=True)
# create fast weights so that we can use second-order gradient
for k, weight in enumerate(model.parameters()):
weight.fast = weight - args.inner_lr * grad[k]
# outer loop
# update y~ <-- y~ - beta nabla_y~ L(f_theta(x_t'), y_t')
# fast weights will be used
logit = model(input_)
label_loss = criterion(logit, target)
labels_opt.zero_grad()
# retain_graph=True allows us to update the feature extractor
# without calculating the loss again
label_loss.backward(retain_graph=True)
labels_opt.step()
# normalize the labels to form a valid probability distribution
labels.data = torch.clamp(labels.data, 0, 1)
labels.data = labels.data / labels.data.sum(dim=1).unsqueeze(1)
# now update the model
optimizer.zero_grad()
loss.backward()
optimizer.step()
model_losses.update(loss.item(), input_.size(0))
# measure error and record loss
err1 = compute_error_rate(logit.data, target, topk=(1,))[0] # it returns a list
losses.update(label_loss.item(), input_.size(0))
top1.update(err1.item(), input_.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# update the moving average statistics
if len(ma_list) < stats_gap:
ma_list.append(err1.item())
ma_sum += err1.item()
current_num_steps += 1
current_ma = ma_sum / len(ma_list)
if current_num_steps == stats_gap:
lowest_ma_sum = ma_sum
num_steps_from_min = 0
else:
ma_sum = ma_sum - ma_list[0] + err1.item()
ma_list = ma_list[1:] + [err1.item()]
current_num_steps += 1
current_ma = ma_sum / len(ma_list)
if ma_sum < lowest_ma_sum:
lowest_ma_sum = ma_sum
num_steps_from_min = 0
elif num_steps_from_min < stats_gap:
num_steps_from_min += 1
else:
# do early stopping
num_steps_list.append(
current_num_steps - num_steps_from_min - 1)
# restart all metrics
ma_list = []
ma_sum = 0
lowest_ma_sum = 999999999
current_num_steps = 0
num_steps_from_min = 0
# restart the model and the optimizer
if args.target == "cifar10" or args.target == "cifar100":
if args.resnet:
model = M.ResNetMeta(dataset=args.target, depth=18, num_classes=num_classes,
bottleneck=False, device=device).to(device=device)
else:
model = M.AlexCifarNetMeta(args).to(device=device)
else:
model = M.LeNetMeta(args).to(device=device)
optimizer = torch.optim.Adam(model.parameters())
print('Model restarted after ' +
str(num_steps_list[-1]) + ' steps')
if i % args.print_freq == 0 and args.verbose is True:
print('Epoch: [{0}/{1}][{2}/{3}]\t'
'LR: {LR:.6f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Top 1-err {top1.val:.4f} ({top1.avg:.4f})\t'
'MAvg 1-err {current_ma:.4f}'.format(
epoch, args.epochs, i, len(train_loader), LR=1, batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, current_ma=current_ma))
print('* Epoch: [{0}/{1}]\t Top 1-err {top1.avg:.3f} Train Loss {loss.avg:.3f}'.format(
epoch, args.epochs, top1=top1, loss=losses))
return top1.avg, losses.avg, labels, model_losses.avg, \
ma_list, ma_sum, lowest_ma_sum, current_num_steps, num_steps_list, num_steps_from_min, \
model, optimizer
def soft_cross_entropy(pred, soft_targets):
"""A method for calculating cross entropy with soft targets"""
logsoftmax = nn.LogSoftmax()
return torch.mean(torch.sum(- soft_targets * logsoftmax(pred), 1))
def validate(val_loader, model, criterion, epoch, fixed_input, labels, num_steps):
"""Validation phase. This involves training a model from scratch."""
losses_eval = AverageMeter()
top1_eval = AverageMeter()
start = time.time()
print('Number of steps for retraining during validation: ' + str(num_steps))
# initialize a new model
if args.target == "cifar10" or args.target == "cifar100":
if args.resnet:
model_eval = M.ResNetMeta(dataset=args.target, depth=18, num_classes=num_classes,
bottleneck=False, device=device).to(device=device)
else:
model_eval = M.AlexCifarNetMeta(args).to(device=device)
else:
model_eval = M.LeNetMeta(args).to(device=device)
optimizer = torch.optim.Adam(model_eval.parameters())
model_eval.train()
# train a model from scratch for the given number of steps
# using only the base examples and their synthetic labels
for ITER in range(num_steps):
# sample a minibatch of n_i examples from x~, y~: x~', y~'
perm = torch.randperm(fixed_input.size(0))
idx = perm[:args.inner_batch_size]
fi_i = fixed_input[idx]
lb_i = labels[idx].detach()
fi_o = model_eval(fi_i)
loss = soft_cross_entropy(fi_o, lb_i)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# evaluate the validation error
# switch to evaluate mode
model_eval.eval()
for i, (input_, target) in enumerate(val_loader):
input_ = input_.to(device=device)
target = target.to(device=device)
output = model_eval(input_)
loss = criterion(output, target)
# measure error and record loss
err1 = compute_error_rate(output.data, target, topk=(1,))[0]
top1_eval.update(err1.item(), input_.size(0))
losses_eval.update(loss.item(), input_.size(0))
val_time = time.time() - start
print('* Epoch: [{0}/{1}]\t Top 1-err {top1.avg:.3f} Val Loss {loss.avg:.3f} Time {val_time:.3f}'.format(
epoch, args.epochs, top1=top1_eval, loss=losses_eval, val_time=val_time))
return top1_eval.avg, losses_eval.avg
def test(test_loader, model_name, criterion, fixed_input, labels, num_steps):
"""Test phase. This involves training a model from scratch."""
losses_eval = AverageMeter()
top1_eval = AverageMeter()
start = time.time()
print('Number of steps for retraining during test: ' + str(num_steps))
# initialize a new model
if args.target == "cifar10" or args.target == "cifar100":
if args.test_various_models:
if model_name == 'resnet':
model_eval = M.ResNetMeta(dataset=args.target, depth=18, num_classes=num_classes,
bottleneck=False, device=device).to(device=device)
elif model_name == 'LeNet':
model_eval = M.LeNetMeta(args).to(device=device)
else:
model_eval = M.AlexCifarNetMeta(args).to(device=device)
else:
if args.resnet:
model_eval = M.ResNetMeta(dataset=args.target, depth=18, num_classes=num_classes,
bottleneck=False, device=device).to(device=device)
else:
model_eval = M.AlexCifarNetMeta(args).to(device=device)
else:
model_eval = M.LeNetMeta(args).to(device=device)
optimizer = torch.optim.Adam(model_eval.parameters())
model_eval.train()
# train a model from scratch for the given number of steps
# using only the base examples and their synthetic labels
for ITER in range(num_steps):
# sample a minibatch of n_i examples from x~, y~: x~', y~'
perm = torch.randperm(fixed_input.size(0))
idx = perm[:args.inner_batch_size]
fi_i = fixed_input[idx]
lb_i = labels[idx].detach()
fi_o = model_eval(fi_i)
loss = soft_cross_entropy(fi_o, lb_i)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# evaluate the test error
# switch to evaluate mode
model_eval.eval()
for i, (input_, target) in enumerate(test_loader):
input_ = input_.to(device=device)
target = target.to(device=device)
output = model_eval(input_)
loss = criterion(output, target)
# measure error and record loss
err1 = compute_error_rate(output.data, target, topk=(1,))[0]
top1_eval.update(err1.item(), input_.size(0))
losses_eval.update(loss.item(), input_.size(0))
test_time = time.time() - start
print('Testing with a model trained from scratch')
print('Test time: ' + str(test_time))
print(
'Test error (top-1 error): {top1_eval.avg:.4f}'.format(top1_eval=top1_eval))
return top1_eval.avg, losses_eval.avg
def find_best_num_steps(val_loader, criterion, fixed_input, labels):
"""Calculate the best number of steps to use based on the validation set."""
best_num_steps = 0
lowest_err = 100
errors_list = []
num_steps_used = []
# use a larger number of max steps when using more base examples
if args.num_base_examples > 100:
max_num_steps = 1701
else:
max_num_steps = 1000
# initialize a new model
if args.target == "cifar10" or args.target == "cifar100":
if args.resnet:
model_eval = M.ResNetMeta(dataset=args.target, depth=18, num_classes=num_classes,
bottleneck=False, device=device).to(device=device)
else:
model_eval = M.AlexCifarNetMeta(args).to(device=device)
else:
model_eval = M.LeNetMeta(args).to(device=device)
optimizer = torch.optim.Adam(model_eval.parameters())
model_eval.train()
for ITER in range(max_num_steps):
model_eval.train()
# sample a minibatch of n_i examples from x~, y~: x~', y~'
perm = torch.randperm(fixed_input.size(0))
idx = perm[:args.inner_batch_size]
fi_i = fixed_input[idx]
lb_i = labels[idx].detach()
fi_o = model_eval(fi_i)
loss = soft_cross_entropy(fi_o, lb_i)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# for larger numbers of base examples we decrease the frequency of evaluation
if args.num_base_examples > 100:
if ITER in set([9, 24, 74, 100, 200, 300, 500, 700, 1000, 1200, 1500, 1700]):
validate_now = True
else:
validate_now = False
else:
if ITER % 50 == 49 or ITER in set([9, 24, 74]):
validate_now = True
else:
validate_now = False
if validate_now:
# switch to evaluate mode
model_eval.eval()
top1_eval = AverageMeter()
losses_eval = AverageMeter()
for i, (input_, target) in enumerate(val_loader):
input_ = input_.to(device=device)
target = target.to(device=device)
output = model_eval(input_)
loss = criterion(output, target)
# measure error and record loss
err1 = compute_error_rate(output.data, target, topk=(1,))[0]
top1_eval.update(err1.item(), input_.size(0))
losses_eval.update(loss.item(), input_.size(0))
errors_list.append(top1_eval.avg)
num_steps_used.append(ITER + 1)
if top1_eval.avg < lowest_err:
lowest_err = top1_eval.avg
best_num_steps = ITER + 1
print(num_steps_used)
print(errors_list)
return best_num_steps, errors_list, num_steps_used
def create_json_experiment_log(fixed_target):
json_experiment_log_file_name = os.path.join(
'results', args.expname) + '.json'
experiment_summary_dict = {'train_top_1_error': [], 'train_loss': [],
'val_top_1_error': [], 'val_loss': [],
'test_top_1_error': [], 'test_loss': [],
'epoch': [], 'labels': [],
'total_train_time': [], 'total_test_time': [], 'model_loss': [],
'num_val_steps': [], 'num_test_steps': [],
'base_example_labels': fixed_target.tolist()}
with open(json_experiment_log_file_name, 'w') as f:
json.dump(experiment_summary_dict, fp=f)
def update_json_experiment_log_dict(experiment_update_dict):
json_experiment_log_file_name = os.path.join(
'results', args.expname) + '.json'
with open(json_experiment_log_file_name, 'r') as f:
summary_dict = json.load(fp=f)
for key in experiment_update_dict:
if key not in summary_dict:
summary_dict[key] = []
summary_dict[key].append(experiment_update_dict[key])
with open(json_experiment_log_file_name, 'w') as f:
json.dump(summary_dict, fp=f)
def compute_error_rate(output, target, topk=(1,)):
"""Computes the error rate"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
wrong_k = batch_size - correct_k
res.append(wrong_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
main()