-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
bsn_pem_1xb16-400x100-20e_activitynet-feature.py
84 lines (76 loc) · 2.5 KB
/
bsn_pem_1xb16-400x100-20e_activitynet-feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
_base_ = [
'../../_base_/models/bsn_pem.py', '../../_base_/schedules/adam_20e.py',
'../../_base_/default_runtime.py'
]
# dataset settings
dataset_type = 'ActivityNetDataset'
data_root = 'data/ActivityNet/activitynet_feature_cuhk/csv_mean_100/'
data_root_val = 'data/ActivityNet/activitynet_feature_cuhk/csv_mean_100/'
ann_file_train = 'data/ActivityNet/anet_anno_train.json'
ann_file_val = 'data/ActivityNet/anet_anno_val.json'
ann_file_test = 'data/ActivityNet/anet_anno_val.json'
work_dir = 'work_dirs/bsn_400x100_20e_1x16_activitynet_feature/'
pgm_proposals_dir = f'{work_dir}/pgm_proposals/'
pgm_features_dir = f'{work_dir}/pgm_features/'
train_pipeline = [
dict(
type='LoadProposals',
top_k=500,
pgm_proposals_dir=pgm_proposals_dir,
pgm_features_dir=pgm_features_dir),
dict(
type='PackLocalizationInputs',
keys=('reference_temporal_iou', 'bsp_feature'),
meta_keys=())
]
val_pipeline = [
dict(
type='LoadProposals',
top_k=1000,
pgm_proposals_dir=pgm_proposals_dir,
pgm_features_dir=pgm_features_dir),
dict(
type='PackLocalizationInputs',
keys=('tmin', 'tmax', 'tmin_score', 'tmax_score', 'bsp_feature'),
meta_keys=('video_name', 'duration_second', 'duration_frame',
'annotations', 'feature_frame')),
]
test_pipeline = val_pipeline
train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=dict(video=data_root),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val),
pipeline=val_pipeline,
test_mode=True))
test_dataloader = dict(
batch_size=1,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_test,
data_prefix=dict(video=data_root_val),
pipeline=test_pipeline,
test_mode=True))
train_cfg = dict(val_interval=20)
test_evaluator = dict(
type='ANetMetric',
metric_type='AR@AN',
dump_config=dict(out=f'{work_dir}/results.json', output_format='json'))
val_evaluator = test_evaluator