-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
bsn_tem_1xb16-2048x100-20e_activitynet-k700-feature.py
95 lines (85 loc) · 2.7 KB
/
bsn_tem_1xb16-2048x100-20e_activitynet-k700-feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
_base_ = ['../../_base_/models/bsn_tem.py', '../../_base_/default_runtime.py']
model = dict(tem_feat_dim=2048)
# dataset settings
dataset_type = 'ActivityNetDataset'
data_root = 'data/ActivityNet/k700slowonly'
data_root_val = 'data/ActivityNet/k700slowonly'
ann_file_train = 'data/ActivityNet/anet_anno_train.json'
ann_file_val = 'data/ActivityNet/anet_anno_val.json'
ann_file_test = 'data/ActivityNet/anet_anno_trainval.json'
train_pipeline = [
dict(type='LoadLocalizationFeature'),
dict(type='GenerateLocalizationLabels'),
dict(
type='PackLocalizationInputs',
keys=('gt_bbox', ),
meta_keys=('video_name', ))
]
val_pipeline = [
dict(type='LoadLocalizationFeature'),
dict(type='GenerateLocalizationLabels'),
dict(
type='PackLocalizationInputs',
keys=('gt_bbox', ),
meta_keys=('video_name', ))
]
test_pipeline = [
dict(type='LoadLocalizationFeature'),
dict(type='PackLocalizationInputs', meta_keys=('video_name', ))
]
train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=dict(video=data_root),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val),
pipeline=val_pipeline,
test_mode=True))
test_dataloader = dict(
batch_size=1,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_test,
data_prefix=dict(video=data_root_val),
pipeline=test_pipeline,
test_mode=True))
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=20, val_begin=1, val_interval=20)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
optim_wrapper = dict(
optimizer=dict(type='Adam', lr=0.001, weight_decay=0.0001),
clip_grad=dict(max_norm=40, norm_type=2))
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=20,
by_epoch=True,
milestones=[7, 14],
gamma=0.1)
]
work_dir = 'work_dirs/bsn_400x100_20e_1x16_activitynet_feature/'
tem_results_dir = f'{work_dir}/tem_results/'
test_evaluator = dict(
type='ANetMetric',
metric_type='TEM',
dump_config=dict(out=tem_results_dir, output_format='csv'))
val_evaluator = test_evaluator
default_hooks = dict(checkpoint=dict(filename_tmpl='tem_epoch_{}.pth'))