-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
tsm_imagenet-pretrained-mobilenetv2_8xb16-1x1x8-100e_kinetics400-rgb.py
124 lines (114 loc) · 3.62 KB
/
tsm_imagenet-pretrained-mobilenetv2_8xb16-1x1x8-100e_kinetics400-rgb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
_base_ = [
'../../_base_/models/tsm_mobilenet_v2.py',
'../../_base_/default_runtime.py'
]
# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/kinetics400/videos_train'
data_root_val = 'data/kinetics400/videos_val'
ann_file_train = 'data/kinetics400/kinetics400_train_list_videos.txt'
ann_file_val = 'data/kinetics400/kinetics400_val_list_videos.txt'
file_client_args = dict(io_backend='disk')
train_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(
type='MultiScaleCrop',
input_size=224,
scales=(1, 0.875, 0.75, 0.66),
random_crop=False,
max_wh_scale_gap=1,
num_fixed_crops=13),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
val_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=8,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
test_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=8,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='ThreeCrop', crop_size=256),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=dict(video=data_root),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val),
pipeline=val_pipeline,
test_mode=True))
test_dataloader = dict(
batch_size=1,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val),
pipeline=test_pipeline,
test_mode=True))
val_evaluator = dict(type='AccMetric')
test_evaluator = val_evaluator
default_hooks = dict(checkpoint=dict(interval=3, max_keep_ckpts=3))
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=100, val_begin=1, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=100,
by_epoch=True,
milestones=[40, 80],
gamma=0.1)
]
optim_wrapper = dict(
constructor='TSMOptimWrapperConstructor',
paramwise_cfg=dict(fc_lr5=True),
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00002),
clip_grad=dict(max_norm=20, norm_type=2))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (16 samples per GPU).
auto_scale_lr = dict(enable=True, base_batch_size=128)