-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
fsaf_r50_fpn_1x_coco.py
47 lines (46 loc) · 1.42 KB
/
fsaf_r50_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
_base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
# model settings
model = dict(
type='FSAF',
bbox_head=dict(
type='FSAFHead',
num_classes=80,
in_channels=256,
stacked_convs=4,
feat_channels=256,
reg_decoded_bbox=True,
# Only anchor-free branch is implemented. The anchor generator only
# generates 1 anchor at each feature point, as a substitute of the
# grid of features.
anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=1,
scales_per_octave=1,
ratios=[1.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(_delete_=True, type='TBLRBBoxCoder', normalizer=4.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0,
reduction='none'),
loss_bbox=dict(
_delete_=True,
type='IoULoss',
eps=1e-6,
loss_weight=1.0,
reduction='none')),
# training and testing settings
train_cfg=dict(
assigner=dict(
_delete_=True,
type='CenterRegionAssigner',
pos_scale=0.2,
neg_scale=0.2,
min_pos_iof=0.01),
allowed_border=-1,
pos_weight=-1,
debug=False))
optim_wrapper = dict(clip_grad=dict(max_norm=10, norm_type=2))