-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathscannet_dataset.py
614 lines (532 loc) · 23.3 KB
/
scannet_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
import warnings
from os import path as osp
import numpy as np
from mmdet3d.core import instance_seg_eval, show_result, show_seg_result
from mmdet3d.core.bbox import DepthInstance3DBoxes
from mmseg.datasets import DATASETS as SEG_DATASETS
from .builder import DATASETS
from .custom_3d import Custom3DDataset
from .custom_3d_seg import Custom3DSegDataset
from .pipelines import Compose
@DATASETS.register_module()
class ScanNetDataset(Custom3DDataset):
r"""ScanNet Dataset for Detection Task.
This class serves as the API for experiments on the ScanNet Dataset.
Please refer to the `github repo <https://github.com/ScanNet/ScanNet>`_
for data downloading.
Args:
data_root (str): Path of dataset root.
ann_file (str): Path of annotation file.
pipeline (list[dict], optional): Pipeline used for data processing.
Defaults to None.
classes (tuple[str], optional): Classes used in the dataset.
Defaults to None.
modality (dict, optional): Modality to specify the sensor data used
as input. Defaults to None.
box_type_3d (str, optional): Type of 3D box of this dataset.
Based on the `box_type_3d`, the dataset will encapsulate the box
to its original format then converted them to `box_type_3d`.
Defaults to 'Depth' in this dataset. Available options includes
- 'LiDAR': Box in LiDAR coordinates.
- 'Depth': Box in depth coordinates, usually for indoor dataset.
- 'Camera': Box in camera coordinates.
filter_empty_gt (bool, optional): Whether to filter empty GT.
Defaults to True.
test_mode (bool, optional): Whether the dataset is in test mode.
Defaults to False.
"""
CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')
def __init__(self,
data_root,
ann_file,
pipeline=None,
classes=None,
modality=dict(use_camera=False, use_depth=True),
box_type_3d='Depth',
filter_empty_gt=True,
test_mode=False,
**kwargs):
super().__init__(
data_root=data_root,
ann_file=ann_file,
pipeline=pipeline,
classes=classes,
modality=modality,
box_type_3d=box_type_3d,
filter_empty_gt=filter_empty_gt,
test_mode=test_mode,
**kwargs)
assert 'use_camera' in self.modality and \
'use_depth' in self.modality
assert self.modality['use_camera'] or self.modality['use_depth']
def get_data_info(self, index):
"""Get data info according to the given index.
Args:
index (int): Index of the sample data to get.
Returns:
dict: Data information that will be passed to the data
preprocessing pipelines. It includes the following keys:
- sample_idx (str): Sample index.
- pts_filename (str): Filename of point clouds.
- file_name (str): Filename of point clouds.
- img_prefix (str, optional): Prefix of image files.
- img_info (dict, optional): Image info.
- ann_info (dict): Annotation info.
"""
info = self.data_infos[index]
sample_idx = info['point_cloud']['lidar_idx']
pts_filename = osp.join(self.data_root, info['pts_path'])
input_dict = dict(sample_idx=sample_idx)
if self.modality['use_depth']:
input_dict['pts_filename'] = pts_filename
input_dict['file_name'] = pts_filename
if self.modality['use_camera']:
img_info = []
for img_path in info['img_paths']:
img_info.append(
dict(filename=osp.join(self.data_root, img_path)))
intrinsic = info['intrinsics']
axis_align_matrix = self._get_axis_align_matrix(info)
depth2img = []
for extrinsic in info['extrinsics']:
depth2img.append(
intrinsic @ np.linalg.inv(axis_align_matrix @ extrinsic))
input_dict['img_prefix'] = None
input_dict['img_info'] = img_info
input_dict['depth2img'] = depth2img
if not self.test_mode:
annos = self.get_ann_info(index)
input_dict['ann_info'] = annos
if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any():
return None
return input_dict
def get_ann_info(self, index):
"""Get annotation info according to the given index.
Args:
index (int): Index of the annotation data to get.
Returns:
dict: annotation information consists of the following keys:
- gt_bboxes_3d (:obj:`DepthInstance3DBoxes`):
3D ground truth bboxes
- gt_labels_3d (np.ndarray): Labels of ground truths.
- pts_instance_mask_path (str): Path of instance masks.
- pts_semantic_mask_path (str): Path of semantic masks.
- axis_align_matrix (np.ndarray): Transformation matrix for
global scene alignment.
"""
# Use index to get the annos, thus the evalhook could also use this api
info = self.data_infos[index]
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
np.float32) # k, 6
gt_labels_3d = info['annos']['class'].astype(np.int64)
else:
gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
gt_labels_3d = np.zeros((0, ), dtype=np.int64)
# to target box structure
gt_bboxes_3d = DepthInstance3DBoxes(
gt_bboxes_3d,
box_dim=gt_bboxes_3d.shape[-1],
with_yaw=False,
origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
pts_instance_mask_path = osp.join(self.data_root,
info['pts_instance_mask_path'])
pts_semantic_mask_path = osp.join(self.data_root,
info['pts_semantic_mask_path'])
axis_align_matrix = self._get_axis_align_matrix(info)
anns_results = dict(
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d,
pts_instance_mask_path=pts_instance_mask_path,
pts_semantic_mask_path=pts_semantic_mask_path,
axis_align_matrix=axis_align_matrix)
return anns_results
def prepare_test_data(self, index):
"""Prepare data for testing.
We should take axis_align_matrix from self.data_infos since we need
to align point clouds.
Args:
index (int): Index for accessing the target data.
Returns:
dict: Testing data dict of the corresponding index.
"""
input_dict = self.get_data_info(index)
# take the axis_align_matrix from data_infos
input_dict['ann_info'] = dict(
axis_align_matrix=self._get_axis_align_matrix(
self.data_infos[index]))
self.pre_pipeline(input_dict)
example = self.pipeline(input_dict)
return example
@staticmethod
def _get_axis_align_matrix(info):
"""Get axis_align_matrix from info. If not exist, return identity mat.
Args:
info (dict): one data info term.
Returns:
np.ndarray: 4x4 transformation matrix.
"""
if 'axis_align_matrix' in info['annos'].keys():
return info['annos']['axis_align_matrix'].astype(np.float32)
else:
warnings.warn(
'axis_align_matrix is not found in ScanNet data info, please '
'use new pre-process scripts to re-generate ScanNet data')
return np.eye(4).astype(np.float32)
def _build_default_pipeline(self):
"""Build the default pipeline for this dataset."""
pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
load_dim=6,
use_dim=[0, 1, 2]),
dict(type='GlobalAlignment', rotation_axis=2),
dict(
type='DefaultFormatBundle3D',
class_names=self.CLASSES,
with_label=False),
dict(type='Collect3D', keys=['points'])
]
return Compose(pipeline)
def show(self, results, out_dir, show=True, pipeline=None):
"""Results visualization.
Args:
results (list[dict]): List of bounding boxes results.
out_dir (str): Output directory of visualization result.
show (bool): Visualize the results online.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
"""
assert out_dir is not None, 'Expect out_dir, got none.'
pipeline = self._get_pipeline(pipeline)
for i, result in enumerate(results):
data_info = self.data_infos[i]
pts_path = data_info['pts_path']
file_name = osp.split(pts_path)[-1].split('.')[0]
points = self._extract_data(i, pipeline, 'points').numpy()
gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
pred_bboxes = result['boxes_3d'].tensor.numpy()
show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name,
show)
@DATASETS.register_module()
@SEG_DATASETS.register_module()
class ScanNetSegDataset(Custom3DSegDataset):
r"""ScanNet Dataset for Semantic Segmentation Task.
This class serves as the API for experiments on the ScanNet Dataset.
Please refer to the `github repo <https://github.com/ScanNet/ScanNet>`_
for data downloading.
Args:
data_root (str): Path of dataset root.
ann_file (str): Path of annotation file.
pipeline (list[dict], optional): Pipeline used for data processing.
Defaults to None.
classes (tuple[str], optional): Classes used in the dataset.
Defaults to None.
palette (list[list[int]], optional): The palette of segmentation map.
Defaults to None.
modality (dict, optional): Modality to specify the sensor data used
as input. Defaults to None.
test_mode (bool, optional): Whether the dataset is in test mode.
Defaults to False.
ignore_index (int, optional): The label index to be ignored, e.g.
unannotated points. If None is given, set to len(self.CLASSES).
Defaults to None.
scene_idxs (np.ndarray | str, optional): Precomputed index to load
data. For scenes with many points, we may sample it several times.
Defaults to None.
"""
CLASSES = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
'bathtub', 'otherfurniture')
VALID_CLASS_IDS = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28,
33, 34, 36, 39)
ALL_CLASS_IDS = tuple(range(41))
PALETTE = [
[174, 199, 232],
[152, 223, 138],
[31, 119, 180],
[255, 187, 120],
[188, 189, 34],
[140, 86, 75],
[255, 152, 150],
[214, 39, 40],
[197, 176, 213],
[148, 103, 189],
[196, 156, 148],
[23, 190, 207],
[247, 182, 210],
[219, 219, 141],
[255, 127, 14],
[158, 218, 229],
[44, 160, 44],
[112, 128, 144],
[227, 119, 194],
[82, 84, 163],
]
def __init__(self,
data_root,
ann_file,
pipeline=None,
classes=None,
palette=None,
modality=None,
test_mode=False,
ignore_index=None,
scene_idxs=None,
**kwargs):
super().__init__(
data_root=data_root,
ann_file=ann_file,
pipeline=pipeline,
classes=classes,
palette=palette,
modality=modality,
test_mode=test_mode,
ignore_index=ignore_index,
scene_idxs=scene_idxs,
**kwargs)
def get_ann_info(self, index):
"""Get annotation info according to the given index.
Args:
index (int): Index of the annotation data to get.
Returns:
dict: annotation information consists of the following keys:
- pts_semantic_mask_path (str): Path of semantic masks.
"""
# Use index to get the annos, thus the evalhook could also use this api
info = self.data_infos[index]
pts_semantic_mask_path = osp.join(self.data_root,
info['pts_semantic_mask_path'])
anns_results = dict(pts_semantic_mask_path=pts_semantic_mask_path)
return anns_results
def _build_default_pipeline(self):
"""Build the default pipeline for this dataset."""
pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
use_color=True,
load_dim=6,
use_dim=[0, 1, 2, 3, 4, 5]),
dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,
with_mask_3d=False,
with_seg_3d=True),
dict(
type='PointSegClassMapping',
valid_cat_ids=self.VALID_CLASS_IDS,
max_cat_id=np.max(self.ALL_CLASS_IDS)),
dict(
type='DefaultFormatBundle3D',
with_label=False,
class_names=self.CLASSES),
dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
]
return Compose(pipeline)
def show(self, results, out_dir, show=True, pipeline=None):
"""Results visualization.
Args:
results (list[dict]): List of bounding boxes results.
out_dir (str): Output directory of visualization result.
show (bool): Visualize the results online.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
"""
assert out_dir is not None, 'Expect out_dir, got none.'
pipeline = self._get_pipeline(pipeline)
for i, result in enumerate(results):
data_info = self.data_infos[i]
pts_path = data_info['pts_path']
file_name = osp.split(pts_path)[-1].split('.')[0]
points, gt_sem_mask = self._extract_data(
i, pipeline, ['points', 'pts_semantic_mask'], load_annos=True)
points = points.numpy()
pred_sem_mask = result['semantic_mask'].numpy()
show_seg_result(points, gt_sem_mask,
pred_sem_mask, out_dir, file_name,
np.array(self.PALETTE), self.ignore_index, show)
def get_scene_idxs(self, scene_idxs):
"""Compute scene_idxs for data sampling.
We sample more times for scenes with more points.
"""
# when testing, we load one whole scene every time
if not self.test_mode and scene_idxs is None:
raise NotImplementedError(
'please provide re-sampled scene indexes for training')
return super().get_scene_idxs(scene_idxs)
def format_results(self, results, txtfile_prefix=None):
r"""Format the results to txt file. Refer to `ScanNet documentation
<http://kaldir.vc.in.tum.de/scannet_benchmark/documentation>`_.
Args:
outputs (list[dict]): Testing results of the dataset.
txtfile_prefix (str): The prefix of saved files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
Returns:
tuple: (outputs, tmp_dir), outputs is the detection results,
tmp_dir is the temporal directory created for saving submission
files when ``submission_prefix`` is not specified.
"""
import mmcv
if txtfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
txtfile_prefix = osp.join(tmp_dir.name, 'results')
else:
tmp_dir = None
mmcv.mkdir_or_exist(txtfile_prefix)
# need to map network output to original label idx
pred2label = np.zeros(len(self.VALID_CLASS_IDS)).astype(np.int)
for original_label, output_idx in self.label_map.items():
if output_idx != self.ignore_index:
pred2label[output_idx] = original_label
outputs = []
for i, result in enumerate(results):
info = self.data_infos[i]
sample_idx = info['point_cloud']['lidar_idx']
pred_sem_mask = result['semantic_mask'].numpy().astype(np.int)
pred_label = pred2label[pred_sem_mask]
curr_file = f'{txtfile_prefix}/{sample_idx}.txt'
np.savetxt(curr_file, pred_label, fmt='%d')
outputs.append(dict(seg_mask=pred_label))
return outputs, tmp_dir
@DATASETS.register_module()
@SEG_DATASETS.register_module()
class ScanNetInstanceSegDataset(Custom3DSegDataset):
CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')
VALID_CLASS_IDS = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34,
36, 39)
ALL_CLASS_IDS = tuple(range(41))
def get_ann_info(self, index):
"""Get annotation info according to the given index.
Args:
index (int): Index of the annotation data to get.
Returns:
dict: annotation information consists of the following keys:
- pts_semantic_mask_path (str): Path of semantic masks.
- pts_instance_mask_path (str): Path of instance masks.
"""
# Use index to get the annos, thus the evalhook could also use this api
info = self.data_infos[index]
pts_instance_mask_path = osp.join(self.data_root,
info['pts_instance_mask_path'])
pts_semantic_mask_path = osp.join(self.data_root,
info['pts_semantic_mask_path'])
anns_results = dict(
pts_instance_mask_path=pts_instance_mask_path,
pts_semantic_mask_path=pts_semantic_mask_path)
return anns_results
def get_classes_and_palette(self, classes=None, palette=None):
"""Get class names of current dataset. Palette is simply ignored for
instance segmentation.
Args:
classes (Sequence[str] | str | None): If classes is None, use
default CLASSES defined by builtin dataset. If classes is a
string, take it as a file name. The file contains the name of
classes where each line contains one class name. If classes is
a tuple or list, override the CLASSES defined by the dataset.
Defaults to None.
palette (Sequence[Sequence[int]]] | np.ndarray | None):
The palette of segmentation map. If None is given, random
palette will be generated. Defaults to None.
"""
if classes is not None:
return classes, None
return self.CLASSES, None
def _build_default_pipeline(self):
"""Build the default pipeline for this dataset."""
pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
use_color=True,
load_dim=6,
use_dim=[0, 1, 2, 3, 4, 5]),
dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,
with_mask_3d=True,
with_seg_3d=True),
dict(
type='PointSegClassMapping',
valid_cat_ids=self.VALID_CLASS_IDS,
max_cat_id=40),
dict(
type='DefaultFormatBundle3D',
with_label=False,
class_names=self.CLASSES),
dict(
type='Collect3D',
keys=['points', 'pts_semantic_mask', 'pts_instance_mask'])
]
return Compose(pipeline)
def evaluate(self,
results,
metric=None,
options=None,
logger=None,
show=False,
out_dir=None,
pipeline=None):
"""Evaluation in instance segmentation protocol.
Args:
results (list[dict]): List of results.
metric (str | list[str]): Metrics to be evaluated.
options (dict, optional): options for instance_seg_eval.
logger (logging.Logger | None | str): Logger used for printing
related information during evaluation. Defaults to None.
show (bool, optional): Whether to visualize.
Defaults to False.
out_dir (str, optional): Path to save the visualization results.
Defaults to None.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
Returns:
dict: Evaluation results.
"""
assert isinstance(
results, list), f'Expect results to be list, got {type(results)}.'
assert len(results) > 0, 'Expect length of results > 0.'
assert len(results) == len(self.data_infos)
assert isinstance(
results[0], dict
), f'Expect elements in results to be dict, got {type(results[0])}.'
load_pipeline = self._get_pipeline(pipeline)
pred_instance_masks = [result['instance_mask'] for result in results]
pred_instance_labels = [result['instance_label'] for result in results]
pred_instance_scores = [result['instance_score'] for result in results]
gt_semantic_masks, gt_instance_masks = zip(*[
self._extract_data(
index=i,
pipeline=load_pipeline,
key=['pts_semantic_mask', 'pts_instance_mask'],
load_annos=True) for i in range(len(self.data_infos))
])
ret_dict = instance_seg_eval(
gt_semantic_masks,
gt_instance_masks,
pred_instance_masks,
pred_instance_labels,
pred_instance_scores,
valid_class_ids=self.VALID_CLASS_IDS,
class_labels=self.CLASSES,
options=options,
logger=logger)
if show:
raise NotImplementedError('show is not implemented for now')
return ret_dict