-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
bisenetv1.py
332 lines (295 loc) · 11.7 KB
/
bisenetv1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule
from mmseg.ops import resize
from ..builder import BACKBONES, build_backbone
class SpatialPath(BaseModule):
"""Spatial Path to preserve the spatial size of the original input image
and encode affluent spatial information.
Args:
in_channels(int): The number of channels of input
image. Default: 3.
num_channels (Tuple[int]): The number of channels of
each layers in Spatial Path.
Default: (64, 64, 64, 128).
Returns:
x (torch.Tensor): Feature map for Feature Fusion Module.
"""
def __init__(self,
in_channels=3,
num_channels=(64, 64, 64, 128),
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
init_cfg=None):
super(SpatialPath, self).__init__(init_cfg=init_cfg)
assert len(num_channels) == 4, 'Length of input channels \
of Spatial Path must be 4!'
self.layers = []
for i in range(len(num_channels)):
layer_name = f'layer{i + 1}'
self.layers.append(layer_name)
if i == 0:
self.add_module(
layer_name,
ConvModule(
in_channels=in_channels,
out_channels=num_channels[i],
kernel_size=7,
stride=2,
padding=3,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
elif i == len(num_channels) - 1:
self.add_module(
layer_name,
ConvModule(
in_channels=num_channels[i - 1],
out_channels=num_channels[i],
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
else:
self.add_module(
layer_name,
ConvModule(
in_channels=num_channels[i - 1],
out_channels=num_channels[i],
kernel_size=3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
def forward(self, x):
for i, layer_name in enumerate(self.layers):
layer_stage = getattr(self, layer_name)
x = layer_stage(x)
return x
class AttentionRefinementModule(BaseModule):
"""Attention Refinement Module (ARM) to refine the features of each stage.
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
Returns:
x_out (torch.Tensor): Feature map of Attention Refinement Module.
"""
def __init__(self,
in_channels,
out_channel,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
init_cfg=None):
super(AttentionRefinementModule, self).__init__(init_cfg=init_cfg)
self.conv_layer = ConvModule(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=3,
stride=1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.atten_conv_layer = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
ConvModule(
in_channels=out_channel,
out_channels=out_channel,
kernel_size=1,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None), nn.Sigmoid())
def forward(self, x):
x = self.conv_layer(x)
x_atten = self.atten_conv_layer(x)
x_out = x * x_atten
return x_out
class ContextPath(BaseModule):
"""Context Path to provide sufficient receptive field.
Args:
backbone_cfg:(dict): Config of backbone of
Context Path.
context_channels (Tuple[int]): The number of channel numbers
of various modules in Context Path.
Default: (128, 256, 512).
align_corners (bool, optional): The align_corners argument of
resize operation. Default: False.
Returns:
x_16_up, x_32_up (torch.Tensor, torch.Tensor): Two feature maps
undergoing upsampling from 1/16 and 1/32 downsampling
feature maps. These two feature maps are used for Feature
Fusion Module and Auxiliary Head.
"""
def __init__(self,
backbone_cfg,
context_channels=(128, 256, 512),
align_corners=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
init_cfg=None):
super(ContextPath, self).__init__(init_cfg=init_cfg)
assert len(context_channels) == 3, 'Length of input channels \
of Context Path must be 3!'
self.backbone = build_backbone(backbone_cfg)
self.align_corners = align_corners
self.arm16 = AttentionRefinementModule(context_channels[1],
context_channels[0])
self.arm32 = AttentionRefinementModule(context_channels[2],
context_channels[0])
self.conv_head32 = ConvModule(
in_channels=context_channels[0],
out_channels=context_channels[0],
kernel_size=3,
stride=1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.conv_head16 = ConvModule(
in_channels=context_channels[0],
out_channels=context_channels[0],
kernel_size=3,
stride=1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.gap_conv = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
ConvModule(
in_channels=context_channels[2],
out_channels=context_channels[0],
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
def forward(self, x):
x_4, x_8, x_16, x_32 = self.backbone(x)
x_gap = self.gap_conv(x_32)
x_32_arm = self.arm32(x_32)
x_32_sum = x_32_arm + x_gap
x_32_up = resize(input=x_32_sum, size=x_16.shape[2:], mode='nearest')
x_32_up = self.conv_head32(x_32_up)
x_16_arm = self.arm16(x_16)
x_16_sum = x_16_arm + x_32_up
x_16_up = resize(input=x_16_sum, size=x_8.shape[2:], mode='nearest')
x_16_up = self.conv_head16(x_16_up)
return x_16_up, x_32_up
class FeatureFusionModule(BaseModule):
"""Feature Fusion Module to fuse low level output feature of Spatial Path
and high level output feature of Context Path.
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
Returns:
x_out (torch.Tensor): Feature map of Feature Fusion Module.
"""
def __init__(self,
in_channels,
out_channels,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
init_cfg=None):
super(FeatureFusionModule, self).__init__(init_cfg=init_cfg)
self.conv1 = ConvModule(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.gap = nn.AdaptiveAvgPool2d((1, 1))
self.conv_atten = nn.Sequential(
ConvModule(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg), nn.Sigmoid())
def forward(self, x_sp, x_cp):
x_concat = torch.cat([x_sp, x_cp], dim=1)
x_fuse = self.conv1(x_concat)
x_atten = self.gap(x_fuse)
# Note: No BN and more 1x1 conv in paper.
x_atten = self.conv_atten(x_atten)
x_atten = x_fuse * x_atten
x_out = x_atten + x_fuse
return x_out
@BACKBONES.register_module()
class BiSeNetV1(BaseModule):
"""BiSeNetV1 backbone.
This backbone is the implementation of `BiSeNet: Bilateral
Segmentation Network for Real-time Semantic
Segmentation <https://arxiv.org/abs/1808.00897>`_.
Args:
backbone_cfg:(dict): Config of backbone of
Context Path.
in_channels (int): The number of channels of input
image. Default: 3.
spatial_channels (Tuple[int]): Size of channel numbers of
various layers in Spatial Path.
Default: (64, 64, 64, 128).
context_channels (Tuple[int]): Size of channel numbers of
various modules in Context Path.
Default: (128, 256, 512).
out_indices (Tuple[int] | int, optional): Output from which stages.
Default: (0, 1, 2).
align_corners (bool, optional): The align_corners argument of
resize operation in Bilateral Guided Aggregation Layer.
Default: False.
out_channels(int): The number of channels of output.
It must be the same with `in_channels` of decode_head.
Default: 256.
"""
def __init__(self,
backbone_cfg,
in_channels=3,
spatial_channels=(64, 64, 64, 128),
context_channels=(128, 256, 512),
out_indices=(0, 1, 2),
align_corners=False,
out_channels=256,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
act_cfg=dict(type='ReLU'),
init_cfg=None):
super(BiSeNetV1, self).__init__(init_cfg=init_cfg)
assert len(spatial_channels) == 4, 'Length of input channels \
of Spatial Path must be 4!'
assert len(context_channels) == 3, 'Length of input channels \
of Context Path must be 3!'
self.out_indices = out_indices
self.align_corners = align_corners
self.context_path = ContextPath(backbone_cfg, context_channels,
self.align_corners)
self.spatial_path = SpatialPath(in_channels, spatial_channels)
self.ffm = FeatureFusionModule(context_channels[1], out_channels)
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
def forward(self, x):
# stole refactoring code from Coin Cheung, thanks
x_context8, x_context16 = self.context_path(x)
x_spatial = self.spatial_path(x)
x_fuse = self.ffm(x_spatial, x_context8)
outs = [x_fuse, x_context8, x_context16]
outs = [outs[i] for i in self.out_indices]
return tuple(outs)