-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
93 lines (82 loc) · 3.09 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from typing import List, Tuple
import gradio as gr # type: ignore
import os
import sys
if os.environ.get("DEV_MODE"):
# for local development
sys.path.insert(0, os.path.abspath("../fsrs-optimizer/src/fsrs_optimizer/"))
from fsrs_optimizer import Optimizer, DEFAULT_PARAMETER, FSRS, lineToTensor # type: ignore
def convert_delta_ts(delta_ts: str) -> List[str]:
delta_ts_list = delta_ts.replace(" ", "").split(",")
converted_delta_ts = []
for dt in delta_ts_list:
if dt.endswith("d"):
converted_delta_ts.append(dt[:-1])
elif dt.endswith("m"):
value = float(dt[:-1]) * 30
converted_delta_ts.append(str(value))
elif dt.endswith("y"):
value = float(dt[:-1]) * 365
converted_delta_ts.append(str(value))
else:
converted_delta_ts.append(dt)
return converted_delta_ts
def interface_func(
parameters: str, ratings: str, delta_ts: str, request_retention: float
) -> Tuple[str, str, str]:
parameters = parameters.replace("[", "").replace("]", "")
optimizer = Optimizer()
optimizer.w = list(map(lambda x: float(x.strip()), parameters.split(",")))
test_sequence = optimizer.preview_sequence(
ratings.replace(" ", ""), request_retention
)
default_preview = optimizer.preview(request_retention)
if delta_ts != "":
ratings_list = ratings.replace(" ", "").split(",")
delta_ts_list = convert_delta_ts(delta_ts)
min_len = min(len(ratings_list), len(delta_ts_list))
ratings = ",".join(ratings_list[:min_len])
delta_ts = ",".join(delta_ts_list[:min_len])
s_history, d_history = memory_state_sequence(ratings, delta_ts, optimizer.w)
return (
test_sequence,
default_preview,
f"s: {(', '.join(s_history))}\nd: {', '.join(d_history)}",
)
return test_sequence, default_preview, ""
def memory_state_sequence(
r_history: str, t_history: str, parameters: List[float]
) -> Tuple[List[str], List[str]]:
fsrs = FSRS(parameters)
line_tensor = lineToTensor(list(zip([t_history], [r_history]))[0]).unsqueeze(1)
outputs, _ = fsrs(line_tensor)
stabilities, difficulties = outputs.transpose(0, 1)[0].transpose(0, 1)
return (
list(map(lambda x: str(round(x, 2)), stabilities.tolist())),
list(map(lambda x: str(round(x, 2)), difficulties.tolist())),
)
demo = gr.Interface(
fn=interface_func,
inputs=[
gr.Textbox(
label="FSRS-5 parameters",
lines=1,
value=str(DEFAULT_PARAMETER)[1:-1],
),
gr.Textbox(label="ratings", lines=1, value="3,3,3,3,1,3,3"),
gr.Textbox(label="delta_ts (requried by state history)", lines=1, value=""),
gr.Slider(
label="Your Desired Retention",
minimum=0.6,
maximum=0.97,
step=0.01,
value=0.9,
),
],
outputs=[
gr.Textbox(label="test sequences"),
gr.Textbox(label="default preview"),
gr.Textbox(label="memory state history (require delta_ts)"),
],
)
demo.launch()