-
Notifications
You must be signed in to change notification settings - Fork 144
/
run_inverse_dynamics_model.py
205 lines (180 loc) · 6.81 KB
/
run_inverse_dynamics_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# NOTE: this is _not_ the original code of IDM!
# As such, while it is close and seems to function well,
# its performance might be bit off from what is reported
# in the paper.
from argparse import ArgumentParser
import pickle
import cv2
import numpy as np
import json
import torch as th
from agent import ENV_KWARGS
from inverse_dynamics_model import IDMAgent
KEYBOARD_BUTTON_MAPPING = {
"key.keyboard.escape" :"ESC",
"key.keyboard.s" :"back",
"key.keyboard.q" :"drop",
"key.keyboard.w" :"forward",
"key.keyboard.1" :"hotbar.1",
"key.keyboard.2" :"hotbar.2",
"key.keyboard.3" :"hotbar.3",
"key.keyboard.4" :"hotbar.4",
"key.keyboard.5" :"hotbar.5",
"key.keyboard.6" :"hotbar.6",
"key.keyboard.7" :"hotbar.7",
"key.keyboard.8" :"hotbar.8",
"key.keyboard.9" :"hotbar.9",
"key.keyboard.e" :"inventory",
"key.keyboard.space" :"jump",
"key.keyboard.a" :"left",
"key.keyboard.d" :"right",
"key.keyboard.left.shift" :"sneak",
"key.keyboard.left.control" :"sprint",
"key.keyboard.f" :"swapHands",
}
# Template action
NOOP_ACTION = {
"ESC": 0,
"back": 0,
"drop": 0,
"forward": 0,
"hotbar.1": 0,
"hotbar.2": 0,
"hotbar.3": 0,
"hotbar.4": 0,
"hotbar.5": 0,
"hotbar.6": 0,
"hotbar.7": 0,
"hotbar.8": 0,
"hotbar.9": 0,
"inventory": 0,
"jump": 0,
"left": 0,
"right": 0,
"sneak": 0,
"sprint": 0,
"swapHands": 0,
"camera": np.array([0, 0]),
"attack": 0,
"use": 0,
"pickItem": 0,
}
MESSAGE = """
This script will take a video, predict actions for its frames and
and show them with a cv2 window.
Press any button the window to proceed to the next frame.
"""
# Matches a number in the MineRL Java code regarding sensitivity
# This is for mapping from recorded sensitivity to the one used in the model
CAMERA_SCALER = 360.0 / 2400.0
def json_action_to_env_action(json_action):
"""
Converts a json action into a MineRL action.
Returns (minerl_action, is_null_action)
"""
# This might be slow...
env_action = NOOP_ACTION.copy()
# As a safeguard, make camera action again so we do not override anything
env_action["camera"] = np.array([0, 0])
is_null_action = True
keyboard_keys = json_action["keyboard"]["keys"]
for key in keyboard_keys:
# You can have keys that we do not use, so just skip them
# NOTE in original training code, ESC was removed and replaced with
# "inventory" action if GUI was open.
# Not doing it here, as BASALT uses ESC to quit the game.
if key in KEYBOARD_BUTTON_MAPPING:
env_action[KEYBOARD_BUTTON_MAPPING[key]] = 1
is_null_action = False
mouse = json_action["mouse"]
camera_action = env_action["camera"]
camera_action[0] = mouse["dy"] * CAMERA_SCALER
camera_action[1] = mouse["dx"] * CAMERA_SCALER
if mouse["dx"] != 0 or mouse["dy"] != 0:
is_null_action = False
else:
if abs(camera_action[0]) > 180:
camera_action[0] = 0
if abs(camera_action[1]) > 180:
camera_action[1] = 0
mouse_buttons = mouse["buttons"]
if 0 in mouse_buttons:
env_action["attack"] = 1
is_null_action = False
if 1 in mouse_buttons:
env_action["use"] = 1
is_null_action = False
if 2 in mouse_buttons:
env_action["pickItem"] = 1
is_null_action = False
return env_action, is_null_action
def main(model, weights, video_path, json_path, n_batches, n_frames):
print(MESSAGE)
agent_parameters = pickle.load(open(model, "rb"))
net_kwargs = agent_parameters["model"]["args"]["net"]["args"]
pi_head_kwargs = agent_parameters["model"]["args"]["pi_head_opts"]
pi_head_kwargs["temperature"] = float(pi_head_kwargs["temperature"])
agent = IDMAgent(idm_net_kwargs=net_kwargs, pi_head_kwargs=pi_head_kwargs)
agent.load_weights(weights)
required_resolution = ENV_KWARGS["resolution"]
cap = cv2.VideoCapture(video_path)
json_index = 0
with open(json_path) as json_file:
json_lines = json_file.readlines()
json_data = "[" + ",".join(json_lines) + "]"
json_data = json.loads(json_data)
for _ in range(n_batches):
th.cuda.empty_cache()
print("=== Loading up frames ===")
frames = []
recorded_actions = []
for _ in range(n_frames):
ret, frame = cap.read()
if not ret:
break
assert frame.shape[0] == required_resolution[1] and frame.shape[1] == required_resolution[0], "Video must be of resolution {}".format(required_resolution)
# BGR -> RGB
frames.append(frame[..., ::-1])
env_action, _ = json_action_to_env_action(json_data[json_index])
recorded_actions.append(env_action)
json_index += 1
frames = np.stack(frames)
print("=== Predicting actions ===")
predicted_actions = agent.predict_actions(frames)
for i in range(n_frames):
frame = frames[i]
recorded_action = recorded_actions[i]
cv2.putText(
frame,
f"name: prediction (true)",
(10, 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.4,
(255, 255, 255),
1
)
for y, (action_name, action_array) in enumerate(predicted_actions.items()):
current_prediction = action_array[0, i]
cv2.putText(
frame,
f"{action_name}: {current_prediction} ({recorded_action[action_name]})",
(10, 25 + y * 12),
cv2.FONT_HERSHEY_SIMPLEX,
0.35,
(255, 255, 255),
1
)
# RGB -> BGR again...
cv2.imshow("MineRL IDM model predictions", frame[..., ::-1])
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == "__main__":
parser = ArgumentParser("Run IDM on MineRL recordings.")
parser.add_argument("--weights", type=str, required=True, help="Path to the '.weights' file to be loaded.")
parser.add_argument("--model", type=str, required=True, help="Path to the '.model' file to be loaded.")
parser.add_argument("--video-path", type=str, required=True, help="Path to a .mp4 file (Minecraft recording).")
parser.add_argument("--jsonl-path", type=str, required=True, help="Path to a .jsonl file (Minecraft recording).")
parser.add_argument("--n-frames", type=int, default=128, help="Number of frames to process at a time.")
parser.add_argument("--n-batches", type=int, default=10, help="Number of batches (n-frames) to process for visualization.")
args = parser.parse_args()
main(args.model, args.weights, args.video_path, args.jsonl_path, args.n_batches, args.n_frames)