

CKANAlyze

v0.1.x

Alberto Zanella <a.zanella@trentorise.eu>
Juan Pane <pane@disi.unitn.it>

October 10, 2013

© 2013 TrentoRISE – All Rights Reserved

2

Table of Content
1. Introduction ... 3

2. CKANAlyze Engine .. 3

2.1 Project structure .. 4

2.2 Provided functions ... 4

2.3 Intended usage .. 5

2.4 Tests ... 5

2.5 Functional dependencies ... 5

3. CKANAlyze JPA ... 6

3.1 Project structure .. 6

3.2 Provided functions ... 6

3.3 Intended usage .. 6

3.4 Functional dependencies ... 6

4. CKANAlyze Web (Web API) .. 6

4.1 Project structure .. 7

4.2 Provided functions ... 7

Let the user to manage the configuration ... 8

Computes some statistics on-the-fly ... 8

Exposes stored and computed statistics ... 8

Error management .. 8

4.3 Intended usage .. 8

4.4 Tests ... 8

4.5 Functional dependencies ... 8

5. CKANAlyze Model .. 9

5.1 Project structure .. 9

configuration : contains entity to represent the ScheduleCatalogService response. 9

5.2 Provided functions ... 9

5.3 Intended usage .. 9

6. CKANAlyze Client ... 10

6.1 Project structure .. 10

6.2 Provided functions ... 10

6.3 Intended usage .. 10

6.4 Tests ... 10

6.5 Functional dependencies ... 10

7. E-R Diagram of ckanalyze database ... 11

3

1. Introduction

CKANAlyze is a JAVA application which provides statistical information about specified CKAN Catalogs. For

each CKAN catalog, required to be analyzed, CKANAlyze performs statistical analysis on catalog resources

and provides aggregated information on the whole catalog.

CKANAlyze is composed of two main parts: ckanalyze-engine, which performs analysis and stores results

into the database and ckanalyze-web, which exposes the analysis over a Web Service API.A Java client is

also provided for easy access to the web services (ckanalyze-client) .

CKANAlyze is used by the OpenDataTrentino project (https://github.com/opendatatrentino/) . Statistics

provided by CKANAlyze are integrated into the OpenDataRise platform

(https://github.com/opendatatrentino/OpenDataRise)

CKANAlyze adopts maven as its building solution, dependency manager and deployment tool.

CKANAlyze is composed of five Maven projects:

ckanalyze-engine : the engine standalone application

ckanalyze-jpa : contains Entity classes for persistency management

ckanalyze-web : a java web application containing the Web API

ckanalyze-model : contains JAXB tagged classes for XML / JSON responses

ckanalyze-client : a java library provided as an easy client for ckanalyze-web services

In next sections we briefly describe each module of CKANAlyze. We will present each software in a

different section. An overview of the project structure is provided first. In second paragraph we will

describe behavior of software. Next the intended usage of the software is presented. Finally we will report

test cases and functional dependencies where present.

2. CKANAlyze Engine

Name of the
Maven Project

ckanalyze-engine

Binary
Distribution

YES, Executable JAR

Published in
Maven Central

NO

GitHub URL https://github.com/opendatatrentino/CKANalyze/tree/master/ckanalyze-client

License
AGPLv3 - http://www.gnu.org/licenses/agpl-3.0.html since it uses TrCkanClient
which is distributed under AGPL

https://github.com/opendatatrentino/
https://github.com/opendatatrentino/OpenDataRise
https://github.com/opendatatrentino/CKANalyze/tree/master/ckanalyze-client
http://www.gnu.org/licenses/agpl-3.0.html

4

2.1 Project structure
The project is organized in six packages, as can be seen in Figure 1:

analyzers : contains classes for the analysis of catalog

(CatalogAnalyzer.java) and a sub-package, analyzers.resources which

provide analysis services for resource formats that are supported (in the

current version only CSV analysis).

downloader : contains class to retrieve resource files

managers : contains PersistencyManager which offers easy access

methods to persistency functions.

utility : contains classes not strictly related to the business-logic.

main : contains main class to run the application.

FIGURE 1 CKANALYZE-ENGINE : PROJECT ORGANIZATION

There are three configuration files, one of them is required to be present, the others are optional.

 hibernate.cfg.xml : contains persistency configuration (used DBMS, database URL, username,

password, size of connection pool…), an example is provided with the name

hibernate.cfg.template.xml. For more information about available options, please refers to the

hibernate reference (see http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-

configuration.html). Please note that entity mapping is already configured in the application code.

 log4j.properties : (Optional) contains logging configuration. This is the standard log4j configuration

file. An example is available with the name log4j.properties.template

 ckanalyze.properties : (Optional) Contains the temp-dir (temporary download directory)

configuration. You can pass the parameter also as argument when you start the JAR. An example is

provided with the name ckanalyze.properties.template

2.2 Provided functions
ckanalyze-engine reads information from configuration table of the database, where a list of CKAN

catalogs is stored. For each catalog, ckanalyze-engine operates as follow.

 Lock reading operations on the updating catalog : preventing web service users to obtain

inconsistency stats but leave users to get information about other catalogs;

For each compatible resource (CSV for now), which is available in the catalog, the following steps are

performed (AnalysisMain.resourceAnalysis):

 Download and store useful metadata : The program stores the CKAN Id, File name, Size of file, File

format and direct download url of resource. Then the file is downloaded to the temporary directory

(Downloader) specified in configuration file or by command line parameter.

 Resource analysis : For each CSV resource, following statistics are computed (CSVAnalyzer) and

stored in DB (AnalysisMain.resourceAnalysis):

o rowCount : Number of rows in the file (except heading row);

o columnCount : Number of columns in file;

http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html

5

o colsDataType : ckanalyze-engine performs column type identification. INT, STRING, FLOAT,

DATE, GEOJSON,EMPTY are supported right now. colsDataType is a list of tuples in which,

for each datatype which has been identified in the file, the number of columns of that type

is associated;

o stringDistribution : Complete string length distribution of all field in columns identified to

have type STRING;

o stringAvg : average string length of all string field in the file.

After analysis, each resource file is automatically deleted from the temp directory.

 Catalog metadata and analysis : For each catalog some metadata are stored: CKAN url and total

number of datasets. Other data are computed after resources analysis:

o totalResourcesCount : number of analyzed resources of the catalog;

o totalFileSizeCount : sum of resource file size that were analyzed.

Aggregated statistics are also computed for each catalog (CatalogAnalyzer) and stored in DB:

o avgColumnCount : average number of columns over all analyzed resources ;

o avgRowCount : average number of rows over all analyzed resources ;

o avgStringLength : average string length over all strings fields of all analyzed resources;

o stringDistribution : string length distribution of all strings fields of all analyzed resources.

 Updating Configuration information : at the end of the process lastUpdate field is updated to the

current date/time and the reading lock for the catalog is removed (isUpdating = false).

2.3 Intended usage
ckanalyze-engine is intended to be a standalone application running in background (a periodic cron

process). After the initial configuration it does not requires user interaction.

2.4 Tests
A complete test set is provided in order to test correctness of resource analysis on samples CSV files

(eu.trentorise.opendata.ckanalyze.analyzers.resources. TestCSVAnalyzer). Catalog analysis is tested on a

limited number of resources from CKAN catalog dati.trentino.it

(eu.trentorise.opendata.ckanalyze.analyzers. TestCatalogAnalyzer).

2.5 Functional dependencies
Major dependencies of the current version of ckanalyze-engine are:

 TrCkanClient (AGPLv3): CKAN client to retrieve information from the catalog (for additional

information see https://github.com/opendatatrentino/TrCkanClient);

 nlprise (LGPLv2.1): for date field identification (for additional information see

https://github.com/opendatatrentino/NLPrise);

 hibernate (LGPLv2.1): for persistency management;

 postgresql (BSD License): for database connection;

 ckanalyze-jpa (LGPLv2.1): for JPA Entity classes.

6

3. CKANAlyze JPA
Name of the
Maven Project

ckanalyze-jpa

Binary
Distribution

YES, JAR

Published in
Maven Central

YES

GitHub URL https://github.com/opendatatrentino/CKANalyze/tree/master/ckanalyze-jpa

License LGPLv2.1 - http://www.gnu.org/licenses/lgpl-2.1.html

3.1 Project structure
ckanalyze-jpa is organized in a single package (eu.trentorise.opendata.ckanalyze.jpa), which contains all

classes annotated with JPA standard.

3.2 Provided functions
All classes are annotated with JPA annotations. A developer is able to generate the database schema from

classes in an automatic way. In this first version, the PluralNamingStrategy class (which is present in

ckanalyze-engine and ckanalyze-web) is required to create a working database schema. (see issue #7)

3.3 Intended usage
ckanalyze-jpa is intended to be used from two components of the CKANAlyze application: ckanalyze-

engine and ckanalyze-web in order to easily manage persistence of statistics and configuration data.

3.4 Functional dependencies
Major dependency of current version of ckanalyze-jpa is:

 hibernate-core (LGPLv2.1): for JPA tagging library

4. CKANAlyze Web (Web API)
Name of the
Maven Project

ckanalyze-web

Binary
Distribution

YES, Deployable WAR

Published in
Maven Central

NO

GitHub URL https://github.com/opendatatrentino/CKANalyze/tree/master/ckanalyze-web

License LGPLv2.1 - http://www.gnu.org/licenses/lgpl-2.1.html

https://github.com/opendatatrentino/CKANalyze/tree/master/ckanalyze-jpa
http://github.com/opendatatrentino/CKANalyze/issues/7
https://github.com/opendatatrentino/CKANalyze/tree/master/ckanalyze-web

7

4.1 Project structure
Ckanalyze-web is a standard JAVA Web Application. It does not contains custom servlet or JSP since it uses

Jersey to expose web services. Services are exposed via HTTP, in APPLICATION/JSON format.

Jersey automatically generates JSON output from specific model classes tagged using JAXB annotations and

contained into the ckanalyze-model project.

By this way development and maintenance of client is easer and future versions of the Web API could easily

expose services in other formats (like XML) without any needs to modify models.

Most of Jersey configuration is contained in the web.xml file. Java sources are organized in five packages,

as can be seen in Figure 2:

services : Contains all available web services tagged with JAX-RS

annotations;

controller : Contains the business logic used by services classes

and performs additional analysis which involves data

manipulation. For instance it dynamically computes the

datatype count of the catalog using datatype counts of

resources.

utility: contains the QueryBuilder class, which is the single

endpoint of HQL queries, and the StartupContextListner which

initializes database at the web application startup.

managers: contains classes for persistency management

exceptions: Contains classes to map managed exception to

JAXB objects. In this way exceptions are exposed like any other

response.

Before the deployment of the web application, database configuration needs to be configured. This should

be done editing the hibernate.cfg.xml file. It contains persistency configuration (used DBMS, database

URL, username, password, connection pool …), an example is provided with the name

hibernate.cfg.template.xml . For more information about available options, please refers to the hibernate

reference (see http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-

configuration.html). Please note that entity mapping is already configured into the application code.

4.2 Provided functions
ckanalyze-web performs three main tasks:

1. Let the user to add a catalog to be processed by the ckanalyze-engine (Write Configuration table

on database);

2. Computes some statistics on-the-fly

FIGURE 2 CKANALYZE-WEB :

 PROJECT ORGANIZATION

http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html

8

3. Exposes stored and computed statistics to users, marshaling standard JAXB objects (ckanalyze-

model) to APPLICATION/JSON.

We describe them one by one:

Let the user to manage the configuration

This task is performed by the CatalogScheduler controller class and is exposed by two different

webservices:

 AvailableCatalogService : which takes a catalog name and returns the status of required catalog

(available or not)

 ScheduleCatalogService : which takes a catalog name and adds it into the catalog list if it is not

already present, otherwise it returns the last updating time.

Computes some statistics on-the-fly

This activity is perform directly into the QueryBuilder class. In this way aggregate operations are performed

from the DBMS instead of JAVA and no more than needed data are extracted.

Exposes stored and computed statistics

Model objects are created and populated into the controller classes (CatalogAnalysis and

ResourceAnalysis). Model objects are then returned to service classes (CatalogService and

ResourceService). If a managed exception is thrown it will be mapped to JSONIZEDException object (a

ckanalyze-model class) by the WebAPIExceptionMapper. Jersey automatically marshall JAXB response

objects to JSON.

Error management

Basic error management is implemented. Situations like wrong parameters name, wrong number of

parameters, invalid parameters are clearly reported to users. If an user adopts the ckanalyze-models these

errors are automatically reported as a common JAVA exception (see CkanalyzeClientRemoteException).

4.3 Intended usage
ckanalyze-web is designed to provide statistics via REST web services. A complete web-API documentation

can be found at: https://github.com/opendatatrentino/CKANalyze/wiki/Specs

ckanalyze-web is working with the ckanalyze-client. Integration tests were designed to ensure

compatibility between these two components.

4.4 Tests
No unit tests are available for this component. Integration tests are provided (ckanalyze-test) which tests

both ckanalyze-web and ckanalyze-client.

4.5 Functional dependencies
Major dependencies of the current version of ckanalyze-web are:

 jersey (simil-LGPL): A JAX-RS implementation framework;

 jeckson (LGPLv2.1): to expose web services in APPLICATION/JSON format;

 hibernate-core (LGPLv2.1): to manage persistency;

 ckanalyze-jpa (LGPLv2.1): to easily access database entities via HQL;

 ckanalyze-model (LGPLv2.1): which contains JAXB entity classes.

https://github.com/opendatatrentino/CKANalyze/wiki/Specs

9

5. CKANAlyze Model
Name of the
Maven Project

ckanalyze-model

Binary
Distribution

YES, JAR

Published in
Maven Central

YES

GitHub URL https://github.com/opendatatrentino/CKANalyze/tree/master/ckanalyze-model

License LGPLv2.1 - http://www.gnu.org/licenses/lgpl-2.1.html

5.1 Project structure
ckanalyze-model is organized in four packages, which

contains all classes annotated with JAXB.

root package : root package

(eu.trentorise.opendata.ckanalyze.model) contains basics

responses objects: JSONIZEDException (which represents a

server-side managed exception), Status (which represents a

simple status with a Boolean value), StringDistribution

(which represents a string distribution, shared between

resources and catalogs analysis). Types is an enumeration

which contains all datatypes that are currently supported.

catalog and resources : catalog and resources packages

contains entity specific for the catalog and resources

analysis (respectively).

configuration : contains entity to represent the

ScheduleCatalogService response.

5.2 Provided functions
All classes are annotated with JAXB annotation. Since ckanalyze-model is shared between ckanalyze-web

and ckanalyze-client and the client returns ckanalyze-model class instances as results of its methods, this

component is also part of the client for the end user (developer). For this reason, some classes contains

extra methods which can be used from the client user for an easier access to statistical data. An example is

the public Map<Types, Long> getColsPerTypeMap() which gives to the user an easy access to the column

per type array.

5.3 Intended usage
ckanalyze-model is intended to be used by the ckanalyze-web web application to exposes information via

Web Services and as fundamental part of the ckanalyze-client to give the user an easy access to web

services information.

FIGURE 3 CKANALYZE-JPA :

 PROJECT ORGANIZATION

https://github.com/opendatatrentino/CKANalyze/tree/master/ckanalyze-model

10

6. CKANAlyze Client
Name of the
Maven Project

ckanalyze-client

Binary
Distribution

YES, JAR

Published in
Maven Central

YES

GitHub URL https://github.com/opendatatrentino/CKANalyze/tree/master/ckanalyze-client

License LGPLv2.1 - http://www.gnu.org/licenses/lgpl-2.1.html

6.1 Project structure
ckanalyze-client is a simple Jersey client designed to work with the ckanalyze-web web application. It is

composed of a single class, named CkanalyzeClient on the root package. There is also another package,

named exceptions which contains following classes:

 CkanalyzeClientRemoteException : which represents an exception thrown by the WebAPI and

represented by a JSONIZEDException in model

 CkanalyzeClientResourceNotFoundException : a specific server-side exception which means that

specified resource was not found

 CkanalyzeClientLocalException : an exception occurred locally on the ckanalyze-client

All of them inherits from RuntimeException.

6.2 Provided functions
The ckanalyze-client offers an easy access by following methods:

 getCatalogStats : which retrieves all statistics for a specified CKAN catalog.

 getResourceStats : which retrieves all statistics for a specified CKAN resource ID.

 isScheduledCatalog : which returns true if the catalog is in the Configuration list and false

otherwise.

 scheduleCatalog : which schedule specified catalog if it is not already scheduled.

6.3 Intended usage
ckanalyze-client is intended to be used as a Java library to retrieve ckanalyze statistics in a quick and easy

way.

6.4 Tests
No unit tests are available for this component. Integration tests are provided (ckanalyze-test) which tests

both ckanalyze-web and ckanalyze-client

6.5 Functional dependencies
Major dependencies of the current version of ckanalyze-client are:

 jersey-client (simil-LGPL): to easily access jersey web services

 jeckson (LGPLv2.1): to unmarshall JSON response to Model objects

 ckanalyze-model (LGPLv2.1)

https://github.com/opendatatrentino/CKANalyze/tree/master/ckanalyze-client

11

7. E-R Diagram of ckanalyze database

