-
Notifications
You must be signed in to change notification settings - Fork 125
/
tictactoe_env.py
756 lines (668 loc) · 32.1 KB
/
tictactoe_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
import copy
import os
import sys
from datetime import datetime
from functools import lru_cache
from typing import List
import gymnasium as gym
import matplotlib.pyplot as plt
import numpy as np
from ding.envs.env.base_env import BaseEnv, BaseEnvTimestep
from ding.utils.registry_factory import ENV_REGISTRY
from ditk import logging
from easydict import EasyDict
from zoo.board_games.tictactoe.envs.get_done_winner_cython import get_done_winner_cython
from zoo.board_games.tictactoe.envs.legal_actions_cython import legal_actions_cython
from zoo.board_games.alphabeta_pruning_bot import AlphaBetaPruningBot
@lru_cache(maxsize=512)
def _legal_actions_func_lru(board_tuple):
# Convert tuple to NumPy array.
board_array = np.array(board_tuple, dtype=np.int32)
# Convert NumPy array to memory view.
board_view = board_array.view(dtype=np.int32).reshape(board_array.shape)
return legal_actions_cython(board_view)
@lru_cache(maxsize=512)
def _get_done_winner_func_lru(board_tuple):
# Convert tuple to NumPy array.
board_array = np.array(board_tuple, dtype=np.int32)
# Convert NumPy array to memory view.
board_view = board_array.view(dtype=np.int32).reshape(board_array.shape)
return get_done_winner_cython(board_view)
@ENV_REGISTRY.register('tictactoe')
class TicTacToeEnv(BaseEnv):
config = dict(
# (str): The name of the environment.
env_id="TicTacToe",
# (bool) If True, means that the game is not a zero-sum game.
non_zero_sum=False,
# (str): The mode of the battle. Choices are 'self_play_mode' or 'alpha_beta_pruning'.
battle_mode='self_play_mode',
# (str): The mode of Monte Carlo Tree Search. This is only used in AlphaZero.
battle_mode_in_simulation_env='self_play_mode',
# (str): The type of action the bot should take. Choices are 'v0' or 'alpha_beta_pruning'.
bot_action_type='v0',
# (str): The folder path where replay video saved, if None, will not save replay video.
replay_path=None,
# (bool): If True, the agent will play against a human.
agent_vs_human=False,
# (int): The probability of the random agent.
prob_random_agent=0,
# (int): The probability of the expert agent.
prob_expert_agent=0,
# (bool): If True, the channel will be the last dimension.
channel_last=False,
# (bool): If True, the pixel values will be scaled.
scale=True,
# (int): The value to stop the game.
stop_value=1,
# (bool): If True, the Monte Carlo Tree Search from AlphaZero is used.
alphazero_mcts_ctree=False,
)
@classmethod
def default_config(cls: type) -> EasyDict:
cfg = EasyDict(copy.deepcopy(cls.config))
cfg.cfg_type = cls.__name__ + 'Dict'
return cfg
def __init__(self, cfg=None):
default_config = self.default_config()
default_config.update(cfg)
self._cfg = default_config
self.channel_last = self._cfg.channel_last
self.scale = self._cfg.scale
self.battle_mode = self._cfg.battle_mode
# The mode of interaction between the agent and the environment.
assert self.battle_mode in ['self_play_mode', 'play_with_bot_mode', 'eval_mode']
# The mode of MCTS is only used in AlphaZero.
self.battle_mode_in_simulation_env = 'self_play_mode'
self.board_size = 3
self.players = [1, 2]
self.total_num_actions = 9
self.prob_random_agent = self._cfg.prob_random_agent
self.prob_expert_agent = self._cfg.prob_expert_agent
assert (self.prob_random_agent >= 0 and self.prob_expert_agent == 0) or (
self.prob_random_agent == 0 and self.prob_expert_agent >= 0), \
f'self.prob_random_agent:{self.prob_random_agent}, self.prob_expert_agent:{self.prob_expert_agent}'
self._env = self
self.agent_vs_human = self._cfg.agent_vs_human
self.bot_action_type = self._cfg.bot_action_type
if 'alpha_beta_pruning' in self.bot_action_type:
self.alpha_beta_pruning_player = AlphaBetaPruningBot(self, self._cfg, 'alpha_beta_pruning_player')
self.alphazero_mcts_ctree = self._cfg.alphazero_mcts_ctree
self._replay_path = self._cfg.replay_path if hasattr(self._cfg, "replay_path") and self._cfg.replay_path is not None else None
self._save_replay_count = 0
@property
def legal_actions(self):
# Convert NumPy arrays to nested tuples to make them hashable.
return _legal_actions_func_lru(tuple(map(tuple, self.board)))
# only for evaluation speed
@property
def legal_actions_cython(self):
return legal_actions_cython(list(self.board))
# only for evaluation speed
@property
def legal_actions_cython_lru(self):
# Convert NumPy arrays to nested tuples to make them hashable.
return _legal_actions_func_lru(tuple(map(tuple, self.board)))
def get_done_winner(self):
"""
Overview:
Check if the game is over and who the winner is. Return 'done' and 'winner'.
Returns:
- outputs (:obj:`Tuple`): Tuple containing 'done' and 'winner',
- if player 1 win, 'done' = True, 'winner' = 1
- if player 2 win, 'done' = True, 'winner' = 2
- if draw, 'done' = True, 'winner' = -1
- if game is not over, 'done' = False, 'winner' = -1
"""
# Convert NumPy arrays to nested tuples to make them hashable.
return _get_done_winner_func_lru(tuple(map(tuple, self.board)))
def reset(self, start_player_index=0, init_state=None, katago_policy_init=False, katago_game_state=None):
"""
Overview:
This method resets the environment and optionally starts with a custom state specified by 'init_state'.
Arguments:
- start_player_index (:obj:`int`, optional): Specifies the starting player. The players are [1,2] and
their corresponding indices are [0,1]. Defaults to 0.
- init_state (:obj:`Any`, optional): The custom starting state. If provided, the game starts from this state.
Defaults to None.
- katago_policy_init (:obj:`bool`, optional): This parameter is used to maintain compatibility with the
handling of 'katago' related parts in 'alphazero_mcts_ctree' in Go. Defaults to False.
- katago_game_state (:obj:`Any`, optional): This parameter is similar to 'katago_policy_init' and is used to
maintain compatibility with 'katago' in 'alphazero_mcts_ctree'. Defaults to None.
"""
if self.alphazero_mcts_ctree and init_state is not None:
# Convert byte string to np.ndarray
init_state = np.frombuffer(init_state, dtype=np.int32)
if self.scale:
self._observation_space = gym.spaces.Box(
low=0, high=1, shape=(self.board_size, self.board_size, 3), dtype=np.float32
)
else:
self._observation_space = gym.spaces.Box(
low=0, high=2, shape=(self.board_size, self.board_size, 3), dtype=np.uint8
)
self._action_space = gym.spaces.Discrete(self.board_size ** 2)
self._reward_space = gym.spaces.Box(low=0, high=1, shape=(1,), dtype=np.float32)
self.start_player_index = start_player_index
self._current_player = self.players[self.start_player_index]
if init_state is not None:
self.board = np.array(copy.deepcopy(init_state), dtype="int32")
if self.alphazero_mcts_ctree:
self.board = self.board.reshape((self.board_size, self.board_size))
else:
self.board = np.zeros((self.board_size, self.board_size), dtype="int32")
action_mask = np.zeros(self.total_num_actions, 'int8')
action_mask[self.legal_actions] = 1
if self.battle_mode == 'play_with_bot_mode' or self.battle_mode == 'eval_mode':
# In ``play_with_bot_mode`` and ``eval_mode``, we need to set the "to_play" parameter in the "obs" dict to -1,
# because we don't take into account the alternation between players.
# The "to_play" parameter is used in the MCTS algorithm.
obs = {
'observation': self.current_state()[1],
'action_mask': action_mask,
'board': copy.deepcopy(self.board),
'current_player_index': self.start_player_index,
'to_play': -1
}
elif self.battle_mode == 'self_play_mode':
# In the "self_play_mode", we set to_play=self.current_player in the "obs" dict,
# which is used to differentiate the alternation of 2 players in the game when calculating Q in the MCTS algorithm.
obs = {
'observation': self.current_state()[1],
'action_mask': action_mask,
'board': copy.deepcopy(self.board),
'current_player_index': self.start_player_index,
'to_play': self.current_player
}
if self._replay_path is not None:
self._frames = []
return obs
def reset_v2(self, start_player_index=0, init_state=None):
"""
Overview:
only used in alpha-beta pruning bot.
"""
self.start_player_index = start_player_index
self._current_player = self.players[self.start_player_index]
if init_state is not None:
self.board = np.array(init_state, dtype="int32")
else:
self.board = np.zeros((self.board_size, self.board_size), dtype="int32")
def step(self, action):
if self.battle_mode == 'self_play_mode':
if self.prob_random_agent > 0:
if np.random.rand() < self.prob_random_agent:
action = self.random_action()
elif self.prob_expert_agent > 0:
if np.random.rand() < self.prob_expert_agent:
action = self.bot_action()
timestep = self._player_step(action)
if timestep.done:
# The eval_episode_return is calculated from Player 1's perspective。
timestep.info['eval_episode_return'] = -timestep.reward if timestep.obs[
'to_play'] == 1 else timestep.reward
return timestep
elif self.battle_mode == 'play_with_bot_mode':
# player 1 battle with expert player 2
# player 1's turn
timestep_player1 = self._player_step(action)
# self.env.render()
if timestep_player1.done:
# NOTE: in play_with_bot_mode, we must set to_play as -1, because we don't consider the alternation between players.
# And the to_play is used in MCTS.
timestep_player1.obs['to_play'] = -1
return timestep_player1
# player 2's turn
bot_action = self.bot_action()
# print('player 2 (computer player): ' + self.action_to_string(bot_action))
timestep_player2 = self._player_step(bot_action)
# the eval_episode_return is calculated from Player 1's perspective
timestep_player2.info['eval_episode_return'] = -timestep_player2.reward
timestep_player2 = timestep_player2._replace(reward=-timestep_player2.reward)
timestep = timestep_player2
# NOTE: in play_with_bot_mode, we must set to_play as -1, because we don't consider the alternation between players.
# And the to_play is used in MCTS.
timestep.obs['to_play'] = -1
return timestep
elif self.battle_mode == 'eval_mode':
# player 1 battle with expert player 2
# player 1's turn
if self._replay_path is not None:
self._frames.append(self._env.render(mode='rgb_array'))
timestep_player1 = self._player_step(action)
# self.env.render()
if timestep_player1.done:
# NOTE: in eval_mode, we must set to_play as -1, because we don't consider the alternation between players.
# And the to_play is used in MCTS.
timestep_player1.obs['to_play'] = -1
if self._replay_path is not None:
if not os.path.exists(self._replay_path):
os.makedirs(self._replay_path)
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
path = os.path.join(
self._replay_path,
'tictactoe_{}_{}_{}.mp4'.format(os.getpid(), timestamp, self._save_replay_count)
)
self.display_frames_as_mp4(self._frames, path)
print(f'replay {path} saved!')
self._save_replay_count += 1
return timestep_player1
# player 2's turn
if self.agent_vs_human:
bot_action = self.human_to_action()
else:
bot_action = self.bot_action()
# print('player 2 (computer player): ' + self.action_to_string(bot_action))
if self._replay_path is not None:
self._frames.append(self._env.render(mode='rgb_array'))
timestep_player2 = self._player_step(bot_action)
if self._replay_path is not None:
self._frames.append(self._env.render(mode='rgb_array'))
# the eval_episode_return is calculated from Player 1's perspective
timestep_player2.info['eval_episode_return'] = -timestep_player2.reward
timestep_player2 = timestep_player2._replace(reward=-timestep_player2.reward)
timestep = timestep_player2
# NOTE: in eval_mode, we must set to_play as -1, because we don't consider the alternation between players.
# And the to_play is used in MCTS.
timestep.obs['to_play'] = -1
if timestep_player2.done:
if self._replay_path is not None:
if not os.path.exists(self._replay_path):
os.makedirs(self._replay_path)
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
path = os.path.join(
self._replay_path,
'tictactoe_{}_{}_{}.mp4'.format(os.getpid(), timestamp, self._save_replay_count)
)
self.display_frames_as_mp4(self._frames, path)
print(f'replay {path} saved!')
self._save_replay_count += 1
return timestep
def _player_step(self, action):
if action in self.legal_actions:
row, col = self.action_to_coord(action)
self.board[row, col] = self.current_player
else:
logging.warning(
f"You input illegal action: {action}, the legal_actions are {self.legal_actions}. "
f"Now we randomly choice a action from self.legal_actions."
)
action = np.random.choice(self.legal_actions)
row, col = self.action_to_coord(action)
self.board[row, col] = self.current_player
# Check whether the game is ended or not and give the winner
done, winner = self.get_done_winner()
reward = np.array(float(winner == self.current_player)).astype(np.float32)
info = {'next player to play': self.next_player}
"""
NOTE: here exchange the player
"""
self.current_player = self.next_player
if done:
info['eval_episode_return'] = reward
# print('tictactoe one episode done: ', info)
action_mask = np.zeros(self.total_num_actions, 'int8')
action_mask[self.legal_actions] = 1
obs = {
'observation': self.current_state()[1],
'action_mask': action_mask,
'board': copy.deepcopy(self.board),
'current_player_index': self.players.index(self.current_player),
'to_play': self.current_player
}
return BaseEnvTimestep(obs, reward, done, info)
def current_state(self):
"""
Overview:
obtain the state from the view of current player.
self.board is nd-array, 0 indicates that no stones is placed here,
1 indicates that player 1's stone is placed here, 2 indicates player 2's stone is placed here
Returns:
- current_state (:obj:`array`):
the 0 dim means which positions is occupied by self.current_player,
the 1 dim indicates which positions are occupied by self.next_player,
the 2 dim indicates which player is the to_play player, 1 means player 1, 2 means player 2
"""
board_curr_player = np.where(self.board == self.current_player, 1, 0)
board_opponent_player = np.where(self.board == self.next_player, 1, 0)
board_to_play = np.full((self.board_size, self.board_size), self.current_player)
raw_obs = np.array([board_curr_player, board_opponent_player, board_to_play], dtype=np.float32)
if self.scale:
scale_obs = copy.deepcopy(raw_obs / 2)
else:
scale_obs = copy.deepcopy(raw_obs)
if self.channel_last:
# move channel dim to last axis
# (C, W, H) -> (W, H, C)
return np.transpose(raw_obs, [1, 2, 0]), np.transpose(scale_obs, [1, 2, 0])
else:
# (C, W, H)
return raw_obs, scale_obs
def get_done_reward(self):
"""
Overview:
Check if the game is over and what is the reward in the perspective of player 1.
Return 'done' and 'reward'.
Returns:
- outputs (:obj:`Tuple`): Tuple containing 'done' and 'reward',
- if player 1 win, 'done' = True, 'reward' = 1
- if player 2 win, 'done' = True, 'reward' = -1
- if draw, 'done' = True, 'reward' = 0
- if game is not over, 'done' = False,'reward' = None
"""
done, winner = self.get_done_winner()
if winner == 1:
reward = 1
elif winner == 2:
reward = -1
elif winner == -1 and done:
reward = 0
elif winner == -1 and not done:
# episode is not done
reward = None
return done, reward
def random_action(self):
action_list = self.legal_actions
return np.random.choice(action_list)
def bot_action(self):
if self.bot_action_type == 'v0':
return self.rule_bot_v0()
elif self.bot_action_type == 'alpha_beta_pruning':
return self.bot_action_alpha_beta_pruning()
else:
raise NotImplementedError
def bot_action_alpha_beta_pruning(self):
action = self.alpha_beta_pruning_player.get_best_action(self.board, player_index=self.current_player_index)
return action
def rule_bot_v0(self):
"""
Overview:
Hard coded expert agent for tictactoe env.
First random sample a action from legal_actions, then take the action that will lead a connect3 of current player's pieces.
Returns:
- action (:obj:`int`): the expert action to take in the current game state.
"""
# To easily calculate expert action, we convert the chessboard notation:
# from player 1: 1, player 2: 2
# to player 1: -1, player 2: 1
# TODO: more elegant implementation
board = copy.deepcopy(self.board)
for i in range(board.shape[0]):
for j in range(board.shape[1]):
if board[i][j] == 1:
board[i][j] = -1
elif board[i][j] == 2:
board[i][j] = 1
# first random sample a action from legal_actions
action = np.random.choice(self.legal_actions)
# Horizontal and vertical checks
for i in range(3):
if abs(sum(board[i, :])) == 2:
# if i-th horizontal line has two same pieces and one empty position
# find the index in the i-th horizontal line
ind = np.where(board[i, :] == 0)[0][0]
# convert ind to action
action = np.ravel_multi_index((np.array([i]), np.array([ind])), (3, 3))[0]
if self.current_player_to_compute_bot_action * sum(board[i, :]) > 0:
# only take the action that will lead a connect3 of current player's pieces
return action
if abs(sum(board[:, i])) == 2:
# if i-th vertical line has two same pieces and one empty position
# find the index in the i-th vertical line
ind = np.where(board[:, i] == 0)[0][0]
# convert ind to action
action = np.ravel_multi_index((np.array([ind]), np.array([i])), (3, 3))[0]
if self.current_player_to_compute_bot_action * sum(board[:, i]) > 0:
# only take the action that will lead a connect3 of current player's pieces
return action
# Diagonal checks
diag = board.diagonal()
anti_diag = np.fliplr(board).diagonal()
if abs(sum(diag)) == 2:
# if diagonal has two same pieces and one empty position
# find the index in the diag vector
ind = np.where(diag == 0)[0][0]
# convert ind to action
action = np.ravel_multi_index((np.array([ind]), np.array([ind])), (3, 3))[0]
if self.current_player_to_compute_bot_action * sum(diag) > 0:
# only take the action that will lead a connect3 of current player's pieces
return action
if abs(sum(anti_diag)) == 2:
# if anti-diagonal has two same pieces and one empty position
# find the index in the anti_diag vector
ind = np.where(anti_diag == 0)[0][0]
# convert ind to action
action = np.ravel_multi_index((np.array([ind]), np.array([2 - ind])), (3, 3))[0]
if self.current_player_to_compute_bot_action * sum(anti_diag) > 0:
# only take the action that will lead a connect3 of current player's pieces
return action
return action
@property
def current_player(self):
return self._current_player
@property
def current_player_index(self):
"""
Overview:
current_player_index = 0, current_player = 1
current_player_index = 1, current_player = 2
"""
return 0 if self._current_player == 1 else 1
@property
def next_player(self):
return self.players[0] if self.current_player == self.players[1] else self.players[1]
@property
def current_player_to_compute_bot_action(self):
"""
Overview: to compute expert action easily.
"""
return -1 if self.current_player == 1 else 1
def human_to_action(self):
"""
Overview:
For multiplayer games, ask the user for a legal action
and return the corresponding action number.
Returns:
An integer from the action space.
"""
print(self.board)
while True:
try:
row = int(
input(
f"Enter the row (1, 2, or 3, from up to bottom) to play for the player {self.current_player}: "
)
)
col = int(
input(
f"Enter the column (1, 2 or 3, from left to right) to play for the player {self.current_player}: "
)
)
choice = self.coord_to_action(row - 1, col - 1)
if (choice in self.legal_actions and 1 <= row and 1 <= col and row <= self.board_size
and col <= self.board_size):
break
else:
print("Wrong input, try again")
except KeyboardInterrupt:
print("exit")
sys.exit(0)
except Exception as e:
print("Wrong input, try again")
return choice
def coord_to_action(self, i, j):
"""
Overview:
convert coordinate i, j to action index a in [0, board_size**2)
"""
return i * self.board_size + j
def action_to_coord(self, a):
"""
Overview:
convert action index a in [0, board_size**2) to coordinate (i, j)
"""
return a // self.board_size, a % self.board_size
def action_to_string(self, action_number):
"""
Overview:
Convert an action number to a string representing the action.
Arguments:
- action_number: an integer from the action space.
Returns:
- String representing the action.
"""
row = action_number // self.board_size + 1
col = action_number % self.board_size + 1
return f"Play row {row}, column {col}"
def simulate_action(self, action):
"""
Overview:
execute action and get next_simulator_env. used in AlphaZero.
Arguments:
- action: an integer from the action space.
Returns:
- next_simulator_env: next simulator env after execute action.
"""
if action not in self.legal_actions:
raise ValueError("action {0} on board {1} is not legal".format(action, self.board))
new_board = copy.deepcopy(self.board)
row, col = self.action_to_coord(action)
new_board[row, col] = self.current_player
if self.start_player_index == 0:
start_player_index = 1 # self.players = [1, 2], start_player = 2, start_player_index = 1
else:
start_player_index = 0 # self.players = [1, 2], start_player = 1, start_player_index = 0
next_simulator_env = copy.deepcopy(self)
next_simulator_env.reset(start_player_index, init_state=new_board)
return next_simulator_env
def simulate_action_v2(self, board, start_player_index, action):
"""
Overview:
execute action from board and get new_board, new_legal_actions. used in alphabeta_pruning_bot.
Arguments:
- board (:obj:`np.array`): current board
- start_player_index (:obj:`int`): start player index
- action (:obj:`int`): action
Returns:
- new_board (:obj:`np.array`): new board
- new_legal_actions (:obj:`list`): new legal actions
"""
self.reset(start_player_index, init_state=board)
if action not in self.legal_actions:
raise ValueError("action {0} on board {1} is not legal".format(action, self.board))
row, col = self.action_to_coord(action)
self.board[row, col] = self.current_player
new_legal_actions = copy.deepcopy(self.legal_actions)
new_board = copy.deepcopy(self.board)
return new_board, new_legal_actions
def render(self, mode="human"):
"""
Render the game state, either as a string (mode='human') or as an RGB image (mode='rgb_array').
Arguments:
- mode (:obj:`str`): The mode to render with. Valid modes are:
- 'human': render to the current display or terminal and
- 'rgb_array': Return an numpy.ndarray with shape (x, y, 3),
representing RGB values for an image of the board
Returns:
if mode is:
- 'human': returns None
- 'rgb_array': return a numpy array representing the rendered image.
Raises:
ValueError: If the provided mode is unknown.
"""
if mode == 'human':
print(self.board)
elif mode == 'rgb_array':
dpi = 80
fig, ax = plt.subplots(figsize=(6, 6), dpi=dpi)
# """Piece is in the cross point of row and col"""
# # Draw a black background, white grid
# ax.imshow(np.zeros((self.board_size, self.board_size, 3)), origin='lower')
# ax.grid(color='white', linewidth=2)
#
# # Draw the 'X' and 'O' symbols for each player
# for i in range(self.board_size):
# for j in range(self.board_size):
# if self.board[i, j] == 1: # Player 1
# ax.text(j, i, 'X', ha='center', va='center', color='white', fontsize=24)
# elif self.board[i, j] == 2: # Player 2
# ax.text(j, i, 'O', ha='center', va='center', color='white', fontsize=24)
# # Setup the axes
# ax.set_xticks(np.arange(self.board_size))
# ax.set_yticks(np.arange(self.board_size))
"""Piece is in the center point of grid"""
# Draw a peachpuff background, black grid
ax.imshow(np.ones((self.board_size, self.board_size, 3)) * np.array([255, 218, 185]) / 255, origin='lower')
ax.grid(color='black', linewidth=2)
# Draw the 'X' and 'O' symbols for each player
for i in range(self.board_size):
for j in range(self.board_size):
if self.board[i, j] == 1: # Player 1
ax.text(j, i, 'X', ha='center', va='center', color='black', fontsize=24)
elif self.board[i, j] == 2: # Player 2
ax.text(j, i, 'O', ha='center', va='center', color='white', fontsize=24)
# Setup the axes
ax.set_xticks(np.arange(0.5, self.board_size, 1))
ax.set_yticks(np.arange(0.5, self.board_size, 1))
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')
# Set the title of the game
plt.title('TicTacToe: ' + ('Black Turn' if self.current_player == 1 else 'White Turn'))
fig.canvas.draw()
# Get the width and height of the figure
width, height = fig.get_size_inches() * fig.get_dpi()
width = int(width)
height = int(height)
# Use the width and height values to reshape the numpy array
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype='uint8')
img = img.reshape(height, width, 3)
plt.close(fig)
return img
else:
raise ValueError(f"Unknown mode '{mode}', it should be either 'human' or 'rgb_array'.")
@staticmethod
def display_frames_as_gif(frames: list, path: str) -> None:
import imageio
imageio.mimsave(path, frames, fps=20)
@staticmethod
def display_frames_as_mp4(frames: list, path: str, fps=5) -> None:
assert path.endswith('.mp4'), f'path must end with .mp4, but got {path}'
import imageio
imageio.mimwrite(path, frames, fps=fps)
def clone(self):
return copy.deepcopy(self)
def seed(self, seed: int, dynamic_seed: bool = True) -> None:
self._seed = seed
self._dynamic_seed = dynamic_seed
np.random.seed(self._seed)
@property
def observation_space(self) -> gym.spaces.Space:
return self._observation_space
@property
def action_space(self) -> gym.spaces.Space:
return self._action_space
@property
def reward_space(self) -> gym.spaces.Space:
return self._reward_space
@current_player.setter
def current_player(self, value):
self._current_player = value
@staticmethod
def create_collector_env_cfg(cfg: dict) -> List[dict]:
collector_env_num = cfg.pop('collector_env_num')
cfg = copy.deepcopy(cfg)
return [cfg for _ in range(collector_env_num)]
@staticmethod
def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
evaluator_env_num = cfg.pop('evaluator_env_num')
cfg = copy.deepcopy(cfg)
# In eval phase, we use ``eval_mode`` to make agent play with the built-in bot to
# evaluate the performance of the current agent.
cfg.battle_mode = 'eval_mode'
return [cfg for _ in range(evaluator_env_num)]
def __repr__(self) -> str:
return "LightZero TicTacToe Env"
def close(self) -> None:
pass