Skip to content

Latest commit

 

History

History
191 lines (166 loc) · 16.7 KB

TotalSegmentator.md

File metadata and controls

191 lines (166 loc) · 16.7 KB

TotalSegmentator

Dataset Information

TotalSegmentator is the currently largest publicly available dataset for three-dimensional medical image segmentation, including 1204 CT images covering 104 types of anatomical structures. Among them, 1082 images are for training, 57 for validation, and 65 for testing. Unlike most datasets focusing only on partial organs and with limited data volume, TotalSegmentator provides unprecedented data scale and diversity, better adapting to the variable clinical scenarios. In addition, it annotates some structures that are rare in other datasets, offering a solid foundation for model research and optimization.

Dataset Meta Information

Dimensions Modality Task Type Anatomical Structures Anatomical Area Number of Categories Data Volume File Format
3D CT Segmentation 27 organs; 59 bones; 10 muscles; 8 vessels Entire body 104 1204 .nii.gz

Resolution Details

Dataset Statistics spacing (mm) size
min (1.5, 1.5, 1.5) (47, 48, 29)
median (1.5, 1.5, 1.5) (241, 231, 231)
max (1.5, 1.5, 1.5) (499, 430, 851)

Total Number of Slices in the Dataset: 312400 (Statistics for 1203 images, excluding one damaged data s0864)

Label Information Statistics

Label Anatomical Structure Occurrence Count Presence Rate Mean Volume (cm³) Volume Variability (cm³)
1 Spleen 870 72.32% 2542.37 176.34
2 Kidney, Right 767 63.76% 432.66 127.42
3 Kidney, Left 786 65.34% 527 126.78
4 Gallbladder 640 53.20% 146.8 17.87
5 Liver 921 76.56% 4162.89 1356.34
6 Stomach 889 73.90% 3175.5 228.41
7 Aorta 1074 89.28% 1447.04 172.47
8 Inferior Vena Cava 961 79.88% 150.43 52.15
9 Portal Vein and Splenic Vein 814 67.66% 65.64 20.74
10 Pancreas 795 66.08% 145.81 59.18
11 Adrenal Gland, Right 811 67.41% 9.88 3.96
12 Adrenal Gland, Left 784 65.17% 13.27 4
13 Lung, Upper Lobe, Left 1008 83.79% 2914.96 794.34
14 Lung, Lower Lobe, Left 900 82.92% 2135.9 640.52
15 Lung, Upper Lobe, Right 885 73.57% 2304.48 731.92
16 Lung, Middle Lobe, Right 865 71.89% 1812.85 330.91
17 Lung, Lower Lobe, Right 975 81.05% 2412.88 744.78
18 Vertebrae, L5 603 50.12% 99.43 61.75
19 Vertebrae, L4 618 51.37% 115.43 62.8
20 Vertebrae, L3 628 52.20% 140.96 62.18
21 Vertebrae, L2 695 57.77% 93.21 55.74
22 Vertebrae, L1 784 65.17% 97.68 50.84
23 Vertebrae, T12 854 70.99% 108.59 44.9
24 Vertebrae, T11 870 72.32% 75 44.16
25 Vertebrae, T10 860 71.49% 85.52 38
26 Vertebrae, T9 833 69.24% 67.92 33.19
27 Vertebrae, T8 830 68.84% 81.54 30.12
28 Vertebrae, T7 731 60.76% 60.16 28.24
29 Vertebrae, T6 722 60.02% 56.8 25.2
30 Vertebrae, T5 759 60.43% 46.19 24.35
31 Vertebrae, T4 735 61.10% 37.59 22.98
32 Vertebrae, T3 759 61.43% 40.2 21.8
33 Vertebrae, T2 721 59.93% 38.82 23.05
34 Vertebrae, T1 701 58.27% 41.32 21.92
35 Vertebrae, C7 688 57.19% 32.37 13.5
36 Vertebrae, C6 554 46.05% 27.45 6.1
37 Vertebrae, C5 348 28.93% 25.66 11.24
38 Vertebrae, C4 249 20.70% 25.07 12.36
39 Vertebrae, C3 228 18.95% 23.21 12.76
40 Vertebrae, C2 243 20.20% 28.83 17.34
41 Esophagus 240 84.37% 17.67 27.35
42 Trachea 788 65.50% 79.61 32.48
43 Heart Myocardium 849 70.57% 264.4 117.96
44 Heart Atrium, Left 834 69.33% 231.52 71.32
45 Heart Ventricle, Left 847 70.41% 245.14 102.92
46 Heart Atrium, Right 849 70.57% 319.19 81.95
47 Heart Ventricle, Right 859 71.40% 388.04 137.71
48 Pulmonary Artery 721 59.93% 155.23 66.18
49 Brain 239 19.87% 1557.75 431.31
50 Iliac Artery, Left 634 52.70% 106.37 15.67
51 Iliac Artery, Right 627 52.12% 129.88 16.1
52 Iliac Vein, Left 642 53.37% 61.56 29.08
53 Iliac Vein, Right 614 51.04% 54.32 24.36
54 Small Bowel 793 65.92% 2584.29 690.8
55 Duodenum 751 62.43% 297.75 48.01
56 Colon 895 74.40% 2046.86 533.74
57 Rib, Left 1st 738 61.35% 211.19 9.25
58 Rib, Left 2nd 749 62.26% 24.73 10.81
59 Rib, Left 3rd 769 63.92% 27.64 11.88
60 Rib, Left 4th 796 66.17% 33.91 14.68
61 Rib, Left 5th 853 70.91% 38.91 15.45
62 Rib, Left 6th 891 74.06% 42.54 17.19
63 Rib, Left 7th 873 72.57% 44.01 18.43
64 Rib, Left 8th 871 72.40% 41.62 15.88
65 Rib, Left 9th 873 72.57% 33.72 15.28
66 Rib, Left 10th 863 71.74% 34.57 12.46
67 Rib, Left 11th 839 69.74% 25.96 7.98
68 Rib, Left 11 869 69.74% 25.96 7.98
69 Rib, Left 12 772 64.17% 10.47 3.14
70 Rib, Right 1 735 61.10% 26.65 9.55
71 Rib, Right 2 746 62.01% 25.05 10.86
72 Rib, Right 3 762 63.34% 28.6 12.04
73 Rib, Right 4 778 64.67% 32.8 15.13
74 Rib, Right 5 825 68.58% 38.53 16.49
75 Rib, Right 6 852 70.82% 43.19 18.29
76 Rib, Right 7 834 69.33% 46.05 19.48
77 Rib, Right 8 843 70.07% 45.69 17.14
78 Rib, Right 9 848 70.70% 39.37 16.07
79 Rib, Right 10 843 70.07% 33.73 12.03
80 Rib, Right 11 847 70.41% 23.15 7.78
81 Rib, Right 12 761 63.26% 12.83 3.08
82 Humerus, Left 642 53.37% 214.21 38.7
83 Humerus, Right 711 59.10% 203.61 38.77
84 Scapula, Left 800 66.50% 327.81 85.73
85 Scapula, Right 779 64.75% 160.98 87.98
86 Clavicle, Left 724 60.18% 62.2 21.76
87 Clavicle, Right 719 59.77% 53.77 23.52
88 Femur, Left 568 47.22% 774.1 158.57
89 Femur, Right 529 43.97% 721.38 161.57
90 Hip, Left 632 52.37% 592.92 359.22
91 Hip, Right 620 51.70% 598.67 359.67
92 Sacrum 603 50.12% 356.18 216.43
93 Face 356 29.59% 1722.87 390.72
94 Gluteus Maximus, Left 582 48.38% 1017.17 443.94
95 Gluteus Maximus, Right 581 48.30% 1084.03 263.22
96 Gluteus Medius, Left 610 50.71% 504.59 246.23
97 Gluteus Medius, Right 599 49.79% 466.93 223.51
98 Gluteus Minimus, Left 565 46.97% 99.59 57.57
99 Gluteus Minimus, Right 556 46.22% 122.36 60.8
100 Autochthon, Left 1115 92.68% 796.14 285.7
101 Autochthon, Right 1113 92.52% 808.46 279.46
102 Iliopsoas, Left 818 68.00% 571.27 200.07
103 Iliopsoas, Right 854 68.50% 635.86 194.32
104 Ureter, Right (Distal End) 829 68.57% 44.76 14.34

Visualization

Visualization using itk-snap.

File Structure

After unzipping the official compressed package, the file structure is as follows: it contains a meta.csv file and multiple sxxxx subdirectories. In meta.csv, each line represents an imaging data, listing the picture ID (image_id), age (age), gender (gender), institutional code (institute), body part or examination range (study_type), and dataset division (split). These data cover CT scans of multiple body parts, sourced from different institutions, and are divided into training, validation, and testing subsets. Each sxxxx subdirectory contains a segmentations folder and a ct.nii.gz file.

TotalSegmentator
│
├── meta.csv
│
├── s0000
│   ├── segmentations
│   │   ├── adrenal_gland_left.nii.gz
│   │   ├── adrenal_gland_right.nii.gz
│   │   ├── aorta.nii.gz
│   │   └── ...
│   ├── ct.nii.gz
│
├── s0001
├── s0002
├── s0003
└── ...

Authors and Institutions

Jakob Wasserthal (Department of Radiology and Nuclear Medicine, University Hospital Basel, Switzerland)

Source Information

Official Website: https://github.com/wasserth/TotalSegmentator

Download Link: https://zenodo.org/record/6802614

Article Address: https://pubs.rsna.org/doi/10.1148/ryai.230024

Data Public Release Date: 2022-07

Citation

@article{totalsegmentator,
    author = {Wasserthal, Jakob and Breit, Hanns-Christian and Meyer, Manfred T. and Pradella, Maurice and Hinck, Daniel and Sauter, Alexander W. and Heye, Tobias and Boll, Daniel T. and Cyriac, Joshy and Yang, Shan and Bach, Michael and Segeroth, Martin},
    title = {TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images},
    journal = {Radiology: Artificial Intelligence},
    volume = {5},
    number = {5},
    pages = {e230024},
    year = {2023}
}

Original introduction article is here.