From 474f94d7c117e0362b48815535198da4f4d4d85e Mon Sep 17 00:00:00 2001 From: Artur Szalata Date: Thu, 17 Oct 2024 20:33:43 +0200 Subject: [PATCH] add cpa --- src/methods/cpa/config.vsh.yaml | 78 ++++++++++----------------------- 1 file changed, 22 insertions(+), 56 deletions(-) diff --git a/src/methods/cpa/config.vsh.yaml b/src/methods/cpa/config.vsh.yaml index 00b46c3f..6086e668 100644 --- a/src/methods/cpa/config.vsh.yaml +++ b/src/methods/cpa/config.vsh.yaml @@ -1,76 +1,42 @@ -# The API specifies which type of component this is. -# It contains specifications for: -# - The input/output files -# - Common parameters -# - A unit test __merge__: ../../api/comp_method.yaml -# A unique identifier for your component (required). -# Can contain only lowercase letters or underscores. name: cpa -# A relatively short label, used when rendering visualisations (required) -label: Cpa -# A one sentence summary of how this method works (required). Used when -# rendering summary tables. -summary: "FILL IN: A one sentence summary of this method." -# A multi-line description of how this component works (required). Used -# when rendering reference documentation. +label: CPA +summary: "Compositional Perturbation Autoencoder for single-cell drug response prediction" description: | - FILL IN: A (multi-line) description of how this method works. -# references: -# doi: -# - 10.1000/xx.123456.789 -# bibtex: -# - | -# @article{foo, -# title={Foo}, -# author={Bar}, -# journal={Baz}, -# year={2024} -# } -links: - # URL to the documentation for this method (required). - documentation: https://url.to/the/documentation - # URL to the code repository for this method (required). - repository: https://github.com/organisation/repository + CPA (Compositional Perturbation Autoencoder) is a deep learning model designed for predicting + single-cell drug responses. It uses an autoencoder architecture with adversarial training to + learn drug-induced changes in gene expression across different cell types and conditions. + The model is trained on single-cell RNA-seq data and can predict cellular responses to + unseen drug combinations and doses. + The implementation is based on https://github.com/theislab/cpa?tab=readme-ov-file and https://colab.research.google.com/github/theislab/cpa/blob/master/docs/tutorials/combosciplex_Rdkit_embeddings.ipynb#scrollTo=f46e39ed +links: + repository: https://github.com/theislab/cpa?tab=readme-ov-file -# Metadata for your component info: - # Which normalisation method this component prefers to use (required). - preferred_normalization: log_cp10k - -# Component-specific parameters (optional) -# arguments: -# - name: "--n_neighbors" -# type: "integer" -# default: 5 -# description: Number of neighbors to use. + # we normalize in the script + preferred_normalization: raw_counts -# Resources required to run the component resources: - # The script of your component (required) - type: python_script path: script.py - # Additional resources your script needs (optional) - # - type: file - # path: weights.pt engines: - # Specifications for the Docker image for this component. - type: docker - image: openproblems/base_python:1.0.0 - # Add custom dependencies here (optional). For more information, see - # https://viash.io/reference/config/engines/docker/#setup . - # setup: - # - type: python - # packages: numpy<2 + image: openproblems/base_pytorch_nvidia:1.0.0 + setup: + - type: python + packages: + - cpa + - scanpy + - anndata + - numpy + - pandas runners: - # This platform allows running the component natively - type: executable - # Allows turning the component into a Nextflow module / pipeline. - type: nextflow directives: - label: [midtime,midmem,midcpu] + label: [ hightime, highmem, highcpu, gpu ] \ No newline at end of file