forked from borglab/gtsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSFMExample_bal.cpp
91 lines (72 loc) · 3.14 KB
/
SFMExample_bal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SFMExample_bal.cpp
* @brief Solve a structure-from-motion problem from a "Bundle Adjustment in the Large" file
* @author Frank Dellaert
*/
// For an explanation of headers, see SFMExample.cpp
#include <gtsam/sfm/SfmData.h> // for loading BAL datasets !
#include <gtsam/slam/GeneralSFMFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/inference/Symbol.h>
#include <vector>
using namespace std;
using namespace gtsam;
using symbol_shorthand::C;
using symbol_shorthand::P;
// We will be using a projection factor that ties a SFM_Camera to a 3D point.
// An SFM_Camera is defined in datase.h as a camera with unknown Cal3Bundler calibration
// and has a total of 9 free parameters
typedef GeneralSFMFactor<SfmCamera,Point3> MyFactor;
/* ************************************************************************* */
int main (int argc, char* argv[]) {
// Find default file, but if an argument is given, try loading a file
string filename = findExampleDataFile("dubrovnik-3-7-pre");
if (argc>1) filename = string(argv[1]);
// Load the SfM data from file
SfmData mydata = SfmData::FromBalFile(filename);
cout << "read " << mydata.numberTracks() << " tracks on " << mydata.numberCameras() << " cameras" << endl;
// Create a factor graph
NonlinearFactorGraph graph;
// We share *one* noiseModel between all projection factors
auto noise =
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
// Add measurements to the factor graph
size_t j = 0;
for(const SfmTrack& track: mydata.tracks) {
for (const auto& [i, uv] : track.measurements) {
graph.emplace_shared<MyFactor>(uv, noise, C(i), P(j)); // note use of shorthand symbols C and P
}
j += 1;
}
// Add a prior on pose x1. This indirectly specifies where the origin is.
// and a prior on the position of the first landmark to fix the scale
graph.addPrior(C(0), mydata.cameras[0], noiseModel::Isotropic::Sigma(9, 0.1));
graph.addPrior(P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1));
// Create initial estimate
Values initial;
size_t i = 0; j = 0;
for(const SfmCamera& camera: mydata.cameras) initial.insert(C(i++), camera);
for(const SfmTrack& track: mydata.tracks) initial.insert(P(j++), track.p);
/* Optimize the graph and print results */
Values result;
try {
LevenbergMarquardtParams params;
params.setVerbosity("ERROR");
LevenbergMarquardtOptimizer lm(graph, initial, params);
result = lm.optimize();
} catch (exception& e) {
cout << e.what();
}
cout << "final error: " << graph.error(result) << endl;
return 0;
}
/* ************************************************************************* */