-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathoffice_fmt_plug.c
829 lines (740 loc) · 27.8 KB
/
office_fmt_plug.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
/*
* Office 2007 cracker patch for JtR. This software is
* Copyright (c) 2012 Dhiru Kholia <dhiru.kholia at gmail.com>.
* Copyright (c) 2012-2021 magnum
* and is hereby released to the general public under the following terms:
* Redistribution and use in source and binary forms, with or without
* modification, are permitted.
*/
#if FMT_EXTERNS_H
extern struct fmt_main fmt_office;
#elif FMT_REGISTERS_H
john_register_one(&fmt_office);
#else
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#include "arch.h"
#include "misc.h"
#include "common.h"
#include "formats.h"
#include "params.h"
#include "options.h"
#include "unicode.h"
#include "aes.h"
#include "sha.h"
#include "sha2.h"
#include "johnswap.h"
#include "office_common.h"
#include "simd-intrinsics.h"
#define FORMAT_LABEL "Office"
#define FORMAT_NAME "2007/2010/2013"
#define ALGORITHM_NAME "SHA1 " SHA1_ALGORITHM_NAME " / SHA512 " SHA512_ALGORITHM_NAME " AES"
#define BENCHMARK_COMMENT ""
#define BENCHMARK_LENGTH 0x107
#define PLAINTEXT_LENGTH 125
#ifdef SIMD_COEF_32
#define GETPOS_512W(i, index) ( (index&(SIMD_COEF_64-1))*8 + ((i*8)&(0xffffffff-7))*SIMD_COEF_64 + (uint32_t)index/SIMD_COEF_64*SHA_BUF_SIZ*SIMD_COEF_64*8 )
#define GETOUTPOS_512W(i, index) ( (index&(SIMD_COEF_64-1))*8 + ((i*8)&(0xffffffff-7))*SIMD_COEF_64 + (uint32_t)index/SIMD_COEF_64*8*SIMD_COEF_64*8 )
#if ARCH_LITTLE_ENDIAN==1
#define GETPOS_1(i, index) ( (index&(SIMD_COEF_32-1))*4 + ((i)&(0xffffffff-3))*SIMD_COEF_32 + (3-((i)&3)) + (uint32_t)index/SIMD_COEF_32*SHA_BUF_SIZ*SIMD_COEF_32*4 )
#define GETPOS_512(i, index) ( (index&(SIMD_COEF_64-1))*8 + ((i)&(0xffffffff-7))*SIMD_COEF_64 + (7-((i)&7)) + (uint32_t)index/SIMD_COEF_64*SHA_BUF_SIZ*SIMD_COEF_64*8 )
#define GETOUTPOS_512(i, index) ( (index&(SIMD_COEF_64-1))*8 + ((i)&(0xffffffff-7))*SIMD_COEF_64 + (7-((i)&7)) + (uint32_t)index/SIMD_COEF_64*8*SIMD_COEF_64*8 )
#else
#define GETPOS_1(i, index) ( (index&(SIMD_COEF_32-1))*4 + ((i)&(0xffffffff-3))*SIMD_COEF_32 + ((i)&3) + (uint32_t)index/SIMD_COEF_32*SHA_BUF_SIZ*SIMD_COEF_32*4 )
#define GETPOS_512(i, index) ( (index&(SIMD_COEF_64-1))*8 + ((i)&(0xffffffff-7))*SIMD_COEF_64 + ((i)&7) + (uint32_t)index/SIMD_COEF_64*SHA_BUF_SIZ*SIMD_COEF_64*8 )
#define GETOUTPOS_512(i, index) ( (index&(SIMD_COEF_64-1))*8 + ((i)&(0xffffffff-7))*SIMD_COEF_64 + ((i)&7) + (uint32_t)index/SIMD_COEF_64*8*SIMD_COEF_64*8 )
#endif
#define SHA1_LOOP_CNT (SIMD_COEF_32 * SIMD_PARA_SHA1)
#define SHA512_LOOP_CNT (SIMD_COEF_64 * SIMD_PARA_SHA512)
#define MIN_KEYS_PER_CRYPT (SIMD_COEF_32 * SIMD_PARA_SHA1 * SIMD_PARA_SHA512)
#define MAX_KEYS_PER_CRYPT (SIMD_COEF_32 * SIMD_PARA_SHA1 * SIMD_PARA_SHA512)
#else
#define SHA1_LOOP_CNT 1
#define SHA512_LOOP_CNT 1
#define MIN_KEYS_PER_CRYPT 1
#define MAX_KEYS_PER_CRYPT 1
#endif
#ifndef OMP_SCALE
#define OMP_SCALE 1 // MKPC and scale tuned for i7
#endif
static struct fmt_tests office_tests[] = {
{"$office$*2007*20*128*16*8b2c9e8c878844fc842012273be4bea8*aa862168b80d8c45c852696a8bb499eb*a413507fabe2d87606595f987f679ff4b5b4c2cd", "Password"},
/* 2007-Default_myhovercraftisfullofeels_.docx */
{"$office$*2007*20*128*16*91f095a1fd02595359fe3938fa9236fd*e22668eb1347957987175079e980990f*659f50b9062d36999bf3d0911068c93268ae1d86", "myhovercraftisfullofeels"},
/* 2007-Default_myhovercraftisfullofeels_.dotx */
{"$office$*2007*20*128*16*56ea65016fbb4eac14a6770b2dbe7e99*8cf82ce1b62f01fd3b2c7666a2313302*21443fe938177e648c482da72212a8848c2e9c80", "myhovercraftisfullofeels"},
/* 2007-Default_myhovercraftisfullofeels_.xlsb */
{"$office$*2007*20*128*16*fbd4cc5dab9b8e341778ddcde9eca740*3a040a9cef3d3675009b22f99718e39c*48053b27e95fa53b3597d48ca4ad41eec382e0c8", "myhovercraftisfullofeels"},
/* 2007-Default_myhovercraftisfullofeels_.xlsm */
{"$office$*2007*20*128*16*fbd4cc5dab9b8e341778ddcde9eca740*92bb2ef34ca662ca8a26c8e2105b05c0*0261ba08cd36a324aa1a70b3908a24e7b5a89dd6", "myhovercraftisfullofeels"},
/* 2007-Default_myhovercraftisfullofeels_.xlsx */
{"$office$*2007*20*128*16*fbd4cc5dab9b8e341778ddcde9eca740*46bef371486919d4bffe7280110f913d*b51af42e6696baa097a7109cebc3d0ff7cc8b1d8", "myhovercraftisfullofeels"},
/* 2007-Default_myhovercraftisfullofeels_.xltx */
{"$office$*2007*20*128*16*fbd4cc5dab9b8e341778ddcde9eca740*1addb6823689aca9ce400be8f9e55fc9*e06bf10aaf3a4049ffa49dd91cf9e7bbf88a1b3b", "myhovercraftisfullofeels"},
/* Github issue #4780 (256-bit key length) */
{"$office$*2007*20*256*16*3e94c22e93f35e14162402da444dec28*7057eb00b1e0e1cce5c85ba0727e9686*ff4f3a5a9e872c364e6d83f07af904ce518b53e6", "12Qwaszx"},
/* 2010-Default_myhovercraftisfullofeels_.docx */
{"$office$*2010*100000*128*16*213aefcafd9f9188e78c1936cbb05a44*d5fc7691292ab6daf7903b9a8f8c8441*46bfac7fb87cd43bd0ab54ebc21c120df5fab7e6f11375e79ee044e663641d5e", "myhovercraftisfullofeels"},
/* 2010-Default_myhovercraftisfullofeels_.dotx */
{"$office$*2010*100000*128*16*0907ec6ecf82ede273b7ee87e44f4ce5*d156501661638cfa3abdb7fdae05555e*4e4b64e12b23f44d9a8e2e00196e582b2da70e5e1ab4784384ad631000a5097a", "myhovercraftisfullofeels"},
/* 2010-Default_myhovercraftisfullofeels_.xlsb */
{"$office$*2010*100000*128*16*71093d08cf950f8e8397b8708de27c1f*00780eeb9605c7e27227c5619e91dc21*90aaf0ea5ccc508e699de7d62c310f94b6798ae77632be0fc1a0dc71600dac38", "myhovercraftisfullofeels"},
/* 2010-Default_myhovercraftisfullofeels_.xlsx */
{"$office$*2010*100000*128*16*71093d08cf950f8e8397b8708de27c1f*ef51883a775075f30d2207e87987e6a3*a867f87ea955d15d8cb08dc8980c04bf564f8af060ab61bf7fa3543853e0d11a", "myhovercraftisfullofeels"},
/* 2013-openwall.pptx */
{"$office$*2013*100000*256*16*9b12805dd6d56f46d07315153f3ecb9c*c5a4a167b51faa6629f6a4caf0b4baa8*87397e0659b2a6fff90291f8e6d6d0018b750b792fefed77001edbafba7769cd", "openwall"},
/* 365-2013-openwall.docx */
{"$office$*2013*100000*256*16*774a174239a7495a59cac39a122d991c*b2f9197840f9e5d013f95a3797708e83*ecfc6d24808691aac0daeaeba72aba314d72c6bbd12f7ff0ea1a33770187caef", "openwall"},
/* 365-2013-password.docx */
{"$office$*2013*100000*256*16*d4fc9302eedabf9872b24ca700a5258b*7c9554d582520747ec3e872f109a7026*1af5b5024f00e35eaf5fd8148b410b57e7451a32898acaf14275a8c119c3a4fd", "password"},
/* 365-2013-password.xlsx */
{"$office$*2013*100000*256*16*59b49c64c0d29de733f0025837327d50*70acc7946646ea300fc13cfe3bd751e2*627c8bdb7d9846228aaea81eeed434d022bb93bb5f4da146cb3ad9d847de9ec9", "password"},
/* 365-2013-strict-password.docx */
{"$office$*2013*100000*256*16*f1c23049d85876e6b20e95ab86a477f1*13303dbd27a38ea86ef11f1b2bc56225*9a69596de0655a6c6a5b2dc4b24d6e713e307fb70af2d6b67b566173e89f941d", "password"},
/* Max password length data, 125 bytes. Made with pass_gen.pl */
{"$office$*2007*20*128*16*7268323350556e527671367031526263*54344b786a6967615052493837496735*96c9d7cc44e81971aadfe81cce88cb8b00000000", "12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345"},
{"$office$*2010*100000*128*16*42624931633777446c67354e34686e64*73592fdc2ecb12cd8dcb3ca2cec852bd*82f7315701818a7150ed7a7977717d0b56dcd1bc27e40a23dee6287a6ed55f9b", "12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345"},
{"$office$*2013*100000*256*16*36537a3373756b587632386d77665362*c5958bd6177be548ce33d99f8e4fd7a7*43baa9dfab09a7e54b9d719dbe5187f1f7b55d7b761361fe1f60c85b044aa125", "12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345"},
/* Office 2019 - sample Word document */
{"$office$*2013*100000*256*16*f4984f25c246bb742259ec55b4bab10c*d7608a90d1f552b6910c5d4ab110e276*04a6a1549a25d4871f63d2d2aa098fd2d6c74ddefcdec92a9616fb48a583f259", "openwall"},
{NULL}
};
static ms_office_custom_salt *cur_salt;
#define MS_OFFICE_2007_ITERATIONS 50000
/* Password encoded in UCS-2 */
static UTF16 (*saved_key)[PLAINTEXT_LENGTH + 1];
/* UCS-2 password length, in octets */
static int *saved_len;
static int *cracked;
static uint8_t (*encryptionKey)[40];
static uint8_t (*verifierKeys1)[64];
static uint8_t (*verifierKeys512)[128];
/* Office 2010/2013 */
static const uint8_t encryptedVerifierHashInputBlockKey[] = {
0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, 0x79
};
static const uint8_t encryptedVerifierHashValueBlockKey[] = {
0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, 0x4e
};
#define dynalloc(var) var = mem_calloc(sizeof(*var), self->params.max_keys_per_crypt)
static void init(struct fmt_main *self)
{
omp_autotune(self, OMP_SCALE);
dynalloc(saved_key);
dynalloc(saved_len);
dynalloc(cracked);
dynalloc(encryptionKey);
dynalloc(verifierKeys1);
dynalloc(verifierKeys512);
if (options.target_enc == UTF_8)
self->params.plaintext_length = MIN(125, PLAINTEXT_LENGTH * 3);
}
static void done(void)
{
MEM_FREE(cracked);
MEM_FREE(saved_len);
MEM_FREE(saved_key);
MEM_FREE(encryptionKey);
MEM_FREE(verifierKeys1);
MEM_FREE(verifierKeys512);
}
static uint8_t *DeriveKey(uint8_t *hashValue, uint8_t *X3)
{
int i;
uint8_t derivedKey[64];
SHA_CTX ctx;
int cbRequiredKeyLength = cur_salt->keySize / 8;
uint8_t *X1 = X3;
uint8_t *X2 = &X3[20];
// See 2.3.4.7 of MS-OFFCRYPTO
for (i = 0; i < 64; i++)
derivedKey[i] = (i < 20 ? 0x36 ^ hashValue[i] : 0x36);
SHA1_Init(&ctx);
SHA1_Update(&ctx, derivedKey, 64);
SHA1_Final(X1, &ctx);
if (cur_salt->verifierHashSize < cbRequiredKeyLength) {
for (i = 0; i < 64; i++)
derivedKey[i] = (i < 20 ? 0x5C ^ hashValue[i] : 0x5C);
SHA1_Init(&ctx);
SHA1_Update(&ctx, derivedKey, 64);
SHA1_Final(X2, &ctx);
}
return X3;
}
#ifdef SIMD_COEF_32
static void GeneratePasswordHashUsingSHA1(int idx, uint8_t final[SHA1_LOOP_CNT][40])
{
uint8_t hashBuf[20];
/*
* H(0) = H(salt, password)
* hashBuf = SHA1Hash(salt, password);
* create input buffer for SHA1 from salt and unicode version of password
*/
uint8_t X3[40];
SHA_CTX ctx;
uint8_t _IBuf[64*SHA1_LOOP_CNT + MEM_ALIGN_CACHE], *keys;
uint32_t *keys32;
uint32_t i, j;
keys = (uint8_t*)mem_align(_IBuf, MEM_ALIGN_CACHE);
keys32 = (uint32_t*)keys;
memset(keys, 0, 64 * SHA1_LOOP_CNT);
for (i = 0; i < SHA1_LOOP_CNT; i++) {
SHA1_Init(&ctx);
SHA1_Update(&ctx, cur_salt->salt, cur_salt->saltSize);
SHA1_Update(&ctx, saved_key[idx + i], saved_len[idx + i]);
SHA1_Final(hashBuf, &ctx);
/*
* Generate each hash in turn
* H(n) = H(i, H(n-1))
* hashBuf = SHA1Hash(i, hashBuf);
*/
/*
* Create a byte array of the integer and put at the front
* of the input buffer.
* 1.3.6 says that little-endian byte ordering is expected.
*/
for (j = 4; j < 24; j++)
keys[GETPOS_1(j, i)] = hashBuf[j-4];
keys[GETPOS_1(j, i)] = 0x80;
/* 24 bytes of crypt data (192 bits). */
keys[GETPOS_1(63, i)] = 192;
}
/* we do 1 less than actual number of iterations here. */
for (i = 0; i < MS_OFFICE_2007_ITERATIONS - 1; i++) {
for (j = 0; j < SHA1_LOOP_CNT; j++) {
keys[GETPOS_1(0, j)] = i & 0xff;
keys[GETPOS_1(1, j)] = i >> 8;
}
/* Here we output to 4 bytes past start of input buffer. */
SIMDSHA1body(keys, &keys32[SIMD_COEF_32], NULL,
SSEi_MIXED_IN | SSEi_OUTPUT_AS_INP_FMT);
}
/*
* Last iteration is output to start of input buffer,
* then 32 bit 0 appended.
* but this is still ends up being 24 bytes of crypt data.
*/
for (j = 0; j < SHA1_LOOP_CNT; j++) {
keys[GETPOS_1(0, j)] = i & 0xff;
keys[GETPOS_1(1, j)] = i >> 8;
}
SIMDSHA1body(keys, keys32, NULL, SSEi_MIXED_IN | SSEi_OUTPUT_AS_INP_FMT);
/*
* Finally, append "block" (0) to H(n)
* hashBuf = SHA1Hash(hashBuf, 0);
*/
for (i = 0; i < SHA1_LOOP_CNT; i++) {
keys[GETPOS_1(20,i)] = 0;
keys[GETPOS_1(21,i)] = 0;
keys[GETPOS_1(22,i)] = 0;
keys[GETPOS_1(23,i)] = 0;
}
SIMDSHA1body(keys, keys32, NULL, SSEi_MIXED_IN | SSEi_FLAT_OUT);
/* Now convert back into a 'flat' value, which is a flat array. */
for (i = 0; i < SHA1_LOOP_CNT; i++)
memcpy(final[i], DeriveKey(&keys[20 * i], X3), cur_salt->keySize / 8);
}
#else
// for non SIMD, SHA1_LOOP_CNT is 1
static void GeneratePasswordHashUsingSHA1(int idx, uint8_t final[SHA1_LOOP_CNT][40])
{
uint8_t hashBuf[20], *key;
UTF16 *passwordBuf = saved_key[idx];
int passwordBufSize = saved_len[idx];
/*
* H(0) = H(salt, password)
* hashBuf = SHA1Hash(salt, password);
* create input buffer for SHA1 from salt and unicode version of password
*/
uint32_t inputBuf[(0x14 + 0x04 + 4) / sizeof(int)];
uint8_t X3[40];
int i;
SHA_CTX ctx;
SHA1_Init(&ctx);
SHA1_Update(&ctx, cur_salt->salt, cur_salt->saltSize);
SHA1_Update(&ctx, passwordBuf, passwordBufSize);
SHA1_Final(hashBuf, &ctx);
/*
* Generate each hash in turn
* H(n) = H(i, H(n-1))
* hashBuf = SHA1Hash(i, hashBuf);
*/
/*
* Create a byte array of the integer and put at the front
* of the input buffer.
* 1.3.6 says that little-endian byte ordering is expected.
*/
memcpy(&inputBuf[1], hashBuf, 20);
for (i = 0; i < MS_OFFICE_2007_ITERATIONS; i++) {
#if ARCH_LITTLE_ENDIAN
*inputBuf = i;
#else
*inputBuf = JOHNSWAP(i);
#endif
/* 'append' the previously generated hash to the input buffer. */
SHA1_Init(&ctx);
SHA1_Update(&ctx, inputBuf, 0x14 + 0x04);
SHA1_Final((uint8_t*)&inputBuf[1], &ctx);
}
/*
* Finally, append "block" (0) to H(n)
* hashBuf = SHA1Hash(hashBuf, 0);
*/
memset(&inputBuf[6], 0, 4);
SHA1_Init(&ctx);
SHA1_Update(&ctx, &inputBuf[1], 0x14 + 0x04);
SHA1_Final(hashBuf, &ctx);
key = DeriveKey(hashBuf, X3);
/*
* Grab the key length bytes of the final hash as the encryption key
*/
memcpy(final[0], key, cur_salt->keySize / 8);
}
#endif
#ifdef SIMD_COEF_32
static void GenerateAgileEncryptionKey(int idx,
uint8_t hashBuf[SHA1_LOOP_CNT][64])
{
uint8_t tmpBuf[20], *keys;
int hashSize = cur_salt->keySize >> 3;
uint32_t i, j;
SHA_CTX ctx;
uint8_t _IBuf[64 * SHA1_LOOP_CNT + MEM_ALIGN_CACHE];
uint8_t _OBuf[20 * SHA1_LOOP_CNT + MEM_ALIGN_CACHE];
uint32_t *keys32, (*crypt)[20 / 4];
crypt = (void*)mem_align(_OBuf, MEM_ALIGN_CACHE);
keys = (uint8_t*)mem_align(_IBuf, MEM_ALIGN_CACHE);
keys32 = (uint32_t*)keys;
memset(keys, 0, 64 * SHA1_LOOP_CNT);
for (i = 0; i < SHA1_LOOP_CNT; i++) {
SHA1_Init(&ctx);
SHA1_Update(&ctx, cur_salt->salt, cur_salt->saltSize);
SHA1_Update(&ctx, saved_key[idx + i], saved_len[idx + i]);
SHA1_Final(tmpBuf, &ctx);
for (j = 4; j < 24; j++)
keys[GETPOS_1(j, i)] = tmpBuf[j - 4];
keys[GETPOS_1(j, i)] = 0x80;
// 24 bytes of crypt data (192 bits).
keys[GETPOS_1(63, i)] = 192;
}
// we do 1 less than actual number of iterations here.
for (i = 0; i < cur_salt->spinCount - 1; i++) {
for (j = 0; j < SHA1_LOOP_CNT; j++) {
keys[GETPOS_1(0, j)] = i & 0xff;
keys[GETPOS_1(1, j)] = (i >> 8) & 0xff;
keys[GETPOS_1(2, j)] = i >> 16;
}
// Here we output to 4 bytes past start of input buffer.
SIMDSHA1body(keys, &keys32[SIMD_COEF_32], NULL,
SSEi_MIXED_IN | SSEi_OUTPUT_AS_INP_FMT);
}
// last iteration is output to start of input buffer, then 32 bit 0 appended.
// but this is still ends up being 24 bytes of crypt data.
for (j = 0; j < SHA1_LOOP_CNT; j++) {
keys[GETPOS_1(0, j)] = i & 0xff;
keys[GETPOS_1(1, j)] = (i >> 8) & 0xff;
keys[GETPOS_1(2, j)] = i >> 16;
}
SIMDSHA1body(keys, keys32, NULL, SSEi_MIXED_IN | SSEi_OUTPUT_AS_INP_FMT);
// Finally, append "block" (0) to H(n)
for (i = 0; i < SHA1_LOOP_CNT; i++) {
for (j = 0; j < 8; j++)
keys[GETPOS_1(20 + j, i)] = encryptedVerifierHashInputBlockKey[j];
keys[GETPOS_1(20 + j, i)] = 0x80;
// 28 bytes of crypt data (192 bits).
keys[GETPOS_1(63, i)] = 224;
}
SIMDSHA1body(keys, (uint32_t*)crypt, NULL, SSEi_MIXED_IN | SSEi_FLAT_OUT);
for (i = 0; i < SHA1_LOOP_CNT; i++)
memcpy(hashBuf[i], crypt[i], 20);
// And second "block" (0) to H(n)
for (i = 0; i < SHA1_LOOP_CNT; i++) {
for (j = 0; j < 8; j++)
keys[GETPOS_1(20 + j, i)] = encryptedVerifierHashValueBlockKey[j];
}
SIMDSHA1body(keys, (uint32_t*)crypt, NULL, SSEi_MIXED_IN | SSEi_FLAT_OUT);
for (i = 0; i < SHA1_LOOP_CNT; i++)
memcpy(&hashBuf[i][32], crypt[i], 20);
// Fix up the size per the spec
if (hashSize > 20) { // FIXME: Is this ever true?
for (i = 0; i < SHA1_LOOP_CNT; i++) {
for (j = 20; j < hashSize; j++) {
hashBuf[i][j] = 0x36;
hashBuf[i][32 + j] = 0x36;
}
}
}
}
#else
static void GenerateAgileEncryptionKey(int idx,
uint8_t hashBuf[SHA1_LOOP_CNT][64])
{
/* H(0) = H(salt, password)
* hashBuf = SHA1Hash(salt, password);
* create input buffer for SHA1 from salt and unicode version of password */
UTF16 *passwordBuf = saved_key[idx];
int passwordBufSize = saved_len[idx];
int hashSize = cur_salt->keySize >> 3;
uint32_t inputBuf[(28 + 4) / sizeof(int)];
uint32_t i;
SHA_CTX ctx;
SHA1_Init(&ctx);
SHA1_Update(&ctx, cur_salt->salt, cur_salt->saltSize);
SHA1_Update(&ctx, passwordBuf, passwordBufSize);
SHA1_Final(hashBuf[0], &ctx);
/* Generate each hash in turn
* H(n) = H(i, H(n-1))
* hashBuf = SHA1Hash(i, hashBuf); */
// Create a byte array of the integer and put at the front of the input buffer
// 1.3.6 says that little-endian byte ordering is expected
memcpy(&inputBuf[1], hashBuf[0], 20);
for (i = 0; i < cur_salt->spinCount; i++) {
#if ARCH_LITTLE_ENDIAN
*inputBuf = i;
#else
*inputBuf = JOHNSWAP(i);
#endif
// 'append' the previously generated hash to the input buffer
SHA1_Init(&ctx);
SHA1_Update(&ctx, inputBuf, 0x14 + 0x04);
SHA1_Final((uint8_t*)&inputBuf[1], &ctx);
}
// Finally, append "block" (0) to H(n)
memcpy(&inputBuf[6], encryptedVerifierHashInputBlockKey, 8);
SHA1_Init(&ctx);
SHA1_Update(&ctx, &inputBuf[1], 28);
SHA1_Final(hashBuf[0], &ctx);
// And second "block" (0) to H(n)
memcpy(&inputBuf[6], encryptedVerifierHashValueBlockKey, 8);
SHA1_Init(&ctx);
SHA1_Update(&ctx, &inputBuf[1], 28);
SHA1_Final(&hashBuf[0][32], &ctx);
// Fix up the size per the spec
if (hashSize > 20) { // FIXME: Is this ever true?
for (i = 20; i < hashSize; i++) {
hashBuf[0][i] = 0x36;
hashBuf[0][32 + i] = 0x36;
}
}
}
#endif
#ifdef SIMD_COEF_64
static void GenerateAgileEncryptionKey512(int idx, uint8_t hashBuf[SHA512_LOOP_CNT][128])
{
uint8_t tmpBuf[64], *keys;
uint32_t i, j, k;
SHA512_CTX ctx;
uint8_t _IBuf[128 * SHA512_LOOP_CNT + MEM_ALIGN_CACHE];
uint8_t _OBuf[64 * SHA512_LOOP_CNT + MEM_ALIGN_CACHE];
uint64_t *keys64, (*crypt)[64 / 8];
uint32_t *keys32, *crypt32;
crypt = (void*)mem_align(_OBuf, MEM_ALIGN_CACHE);
keys = (uint8_t*)mem_align(_IBuf, MEM_ALIGN_CACHE);
keys64 = (uint64_t*)keys;
keys32 = (uint32_t*)keys;
crypt32 = (uint32_t*)crypt;
memset(keys, 0, 128 * SHA512_LOOP_CNT);
for (i = 0; i < SHA512_LOOP_CNT; i++) {
SHA512_Init(&ctx);
SHA512_Update(&ctx, cur_salt->salt, cur_salt->saltSize);
SHA512_Update(&ctx, saved_key[idx + i], saved_len[idx + i]);
SHA512_Final(tmpBuf, &ctx);
for (j = 4; j < 68; j++)
keys[GETPOS_512(j, i)] = tmpBuf[j - 4];
keys[GETPOS_512(j, i)] = 0x80;
// 68 bytes of crypt data (0x220 bits).
keys[GETPOS_512(127, i)] = 0x20;
keys[GETPOS_512(126, i)] = 0x02;
}
// we do 1 less than actual number of iterations here.
for (i = 0; i < cur_salt->spinCount - 1; i++) {
// Iteration counter in first 4 bytes
for (j = 0; j < SHA512_LOOP_CNT; j++) {
keys[GETPOS_512(0, j)] = i & 0xFF;
keys[GETPOS_512(1, j)] = (i >> 8) & 0xFF;
keys[GETPOS_512(2, j)] = (i >> 16) & 0xFF;
keys[GETPOS_512(3, j)] = (i >> 24) & 0xFF;
}
SIMDSHA512body(keys, (uint64_t*)crypt, NULL, SSEi_MIXED_IN);
// Then we output to 4 bytes past start of input buffer.
for (j = 0; j < SHA512_LOOP_CNT; j++) {
uint32_t *o = keys32 + (j & (SIMD_COEF_64 - 1)) * 2 +
j / SIMD_COEF_64 * 2 * SHA_BUF_SIZ * SIMD_COEF_64;
uint32_t *in = crypt32 + (j & (SIMD_COEF_64 - 1)) * 2 +
j / SIMD_COEF_64 * 2 * 8 * SIMD_COEF_64;
for (k = 0; k < 8; k++) {
#if ARCH_LITTLE_ENDIAN==1
o[0] = in[1];
o += SIMD_COEF_64 * 2;
o[1] = in[0];
in += SIMD_COEF_64 * 2;
#else
o[1] = in[0];
o += SIMD_COEF_64 * 2;
o[0] = in[1];
in += SIMD_COEF_64 * 2;
#endif
}
}
}
// last iteration is output to start of input buffer, then 32 bit 0 appended.
// but this is still ends up being 24 bytes of crypt data.
for (j = 0; j < SHA512_LOOP_CNT; j++) {
keys[GETPOS_512(0, j)] = i & 0xff;
keys[GETPOS_512(1, j)] = (i >> 8) & 0xff;
keys[GETPOS_512(2, j)] = i >> 16;
}
SIMDSHA512body(keys, keys64, NULL, SSEi_MIXED_IN | SSEi_OUTPUT_AS_INP_FMT);
// Finally, append "block" (0) to H(n)
for (i = 0; i < SHA512_LOOP_CNT; i++) {
for (j = 0; j < 8; j++)
keys[GETPOS_512(64 + j, i)] = encryptedVerifierHashInputBlockKey[j];
keys[GETPOS_512(64 + j, i)] = 0x80;
// 72 bytes of crypt data (0x240 we already have 0x220 here)
keys[GETPOS_512(127, i)] = 0x40;
}
SIMDSHA512body(keys, (uint64_t*)crypt, NULL, SSEi_MIXED_IN | SSEi_FLAT_OUT);
for (i = 0; i < SHA512_LOOP_CNT; i++)
memcpy((uint64_t*)(hashBuf[i]), crypt[i], 64);
// And second "block" (0) to H(n)
for (i = 0; i < SHA512_LOOP_CNT; i++) {
for (j = 0; j < 8; j++)
keys[GETPOS_512(64 + j, i)] = encryptedVerifierHashValueBlockKey[j];
}
SIMDSHA512body(keys, (uint64_t*)crypt, NULL, SSEi_MIXED_IN | SSEi_FLAT_OUT);
for (i = 0; i < SHA512_LOOP_CNT; i++)
memcpy((uint64_t*)(&hashBuf[i][64]), crypt[i], 64);
}
#else
static void GenerateAgileEncryptionKey512(int idx, uint8_t hashBuf[SHA512_LOOP_CNT][128])
{
UTF16 *passwordBuf = saved_key[idx];
int passwordBufSize = saved_len[idx];
uint32_t inputBuf[128 / sizeof(int)];
int i;
SHA512_CTX ctx;
SHA512_Init(&ctx);
SHA512_Update(&ctx, cur_salt->salt, cur_salt->saltSize);
SHA512_Update(&ctx, passwordBuf, passwordBufSize);
SHA512_Final(hashBuf[0], &ctx);
// Create a byte array of the integer and put at the front of the input buffer
// 1.3.6 says that little-endian byte ordering is expected
memcpy(&inputBuf[1], hashBuf, 64);
for (i = 0; i < cur_salt->spinCount; i++) {
#if ARCH_LITTLE_ENDIAN
*inputBuf = i;
#else
*inputBuf = JOHNSWAP(i);
#endif
// 'append' the previously generated hash to the input buffer
SHA512_Init(&ctx);
SHA512_Update(&ctx, inputBuf, 64 + 0x04);
SHA512_Final((uint8_t*)&inputBuf[1], &ctx);
}
// Finally, append "block" (0) to H(n)
memcpy(&inputBuf[68 / 4], encryptedVerifierHashInputBlockKey, 8);
SHA512_Init(&ctx);
SHA512_Update(&ctx, &inputBuf[1], 64 + 8);
SHA512_Final(hashBuf[0], &ctx);
// And second "block" (0) to H(n)
memcpy(&inputBuf[68 / 4], encryptedVerifierHashValueBlockKey, 8);
SHA512_Init(&ctx);
SHA512_Update(&ctx, &inputBuf[1], 64 + 8);
SHA512_Final(&hashBuf[0][64], &ctx);
}
#endif
static void set_salt(void *salt)
{
cur_salt = (ms_office_custom_salt *)salt;
}
static void
DecryptUsingSymmetricKeyAlgorithm(ms_office_custom_salt *cur_salt,
uint8_t *verifierInputKey,
uint8_t *encryptedVerifier,
const uint8_t *decryptedVerifier,
int length)
{
uint8_t iv[32];
AES_KEY akey;
memcpy(iv, cur_salt->salt, 16);
memset(&iv[16], 0, 16);
AES_set_decrypt_key(verifierInputKey, cur_salt->keySize, &akey);
AES_cbc_encrypt(encryptedVerifier, (uint8_t*)decryptedVerifier,
length, &akey, iv, AES_DECRYPT);
}
static int PasswordVerifier(ms_office_binary_blob *blob, uint8_t *key)
{
uint8_t decryptedVerifier[16];
uint8_t decryptedVerifierHash[16];
AES_KEY akey;
SHA_CTX ctx;
uint8_t checkHash[20];
AES_set_decrypt_key(key, cur_salt->keySize, &akey);
AES_ecb_encrypt(blob->encryptedVerifier, decryptedVerifier,
&akey, AES_DECRYPT);
AES_set_decrypt_key(key, cur_salt->keySize, &akey);
AES_ecb_encrypt(blob->encryptedVerifierHash, decryptedVerifierHash,
&akey, AES_DECRYPT);
/* find SHA1 hash of decryptedVerifier */
SHA1_Init(&ctx);
SHA1_Update(&ctx, decryptedVerifier, 16);
SHA1_Final(checkHash, &ctx);
return !memcmp(checkHash, decryptedVerifierHash, 16);
}
static int crypt_all(int *pcount, struct db_salt *salt)
{
const int count = *pcount;
const int inc =
(cur_salt->version == 2013) ? SHA512_LOOP_CNT : SHA1_LOOP_CNT;
int index;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (index = 0; index < count; index += inc) {
if (cur_salt->version == 2007)
GeneratePasswordHashUsingSHA1(index, &encryptionKey[index]);
else if (cur_salt->version == 2010)
GenerateAgileEncryptionKey(index, &verifierKeys1[index]);
else //if (cur_salt->version == 2013)
GenerateAgileEncryptionKey512(index, &verifierKeys512[index]);
}
return count;
}
static int cmp_all(void *binary, int count)
{
ms_office_binary_blob *blob = ((fmt_data*)binary)->blob;
int index;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (index = 0; index < count; index++) {
if (cur_salt->version == 2007)
cracked[index] = PasswordVerifier(blob, encryptionKey[index]);
else if (cur_salt->version == 2010) {
uint8_t decryptedVerifierHashInputBytes[16];
uint8_t decryptedVerifierHashBytes[32];
uint8_t hash[20];
SHA_CTX ctx;
DecryptUsingSymmetricKeyAlgorithm(cur_salt, verifierKeys1[index],
blob->encryptedVerifier,
decryptedVerifierHashInputBytes,
16);
DecryptUsingSymmetricKeyAlgorithm(cur_salt,
&verifierKeys1[index][32],
blob->encryptedVerifierHash,
decryptedVerifierHashBytes, 32);
SHA1_Init(&ctx);
SHA1_Update(&ctx, decryptedVerifierHashInputBytes, 16);
SHA1_Final(hash, &ctx);
cracked[index] = !memcmp(hash, decryptedVerifierHashBytes, 20);
}
else /* if (cur_salt->version == 2013) */ {
uint8_t decryptedVerifierHashInputBytes[16];
uint8_t decryptedVerifierHashBytes[32];
uint8_t hash[64];
SHA512_CTX ctx;
DecryptUsingSymmetricKeyAlgorithm(cur_salt, verifierKeys512[index],
blob->encryptedVerifier,
decryptedVerifierHashInputBytes,
16);
DecryptUsingSymmetricKeyAlgorithm(cur_salt,
&verifierKeys512[index][64],
blob->encryptedVerifierHash,
decryptedVerifierHashBytes, 32);
SHA512_Init(&ctx);
SHA512_Update(&ctx, decryptedVerifierHashInputBytes, 16);
SHA512_Final(hash, &ctx);
cracked[index] = !memcmp(hash, decryptedVerifierHashBytes, 20);
}
}
for (index = 0; index < count; index++)
if (cracked[index])
return 1;
return 0;
}
static int cmp_one(void *binary, int index)
{
return cracked[index];
}
static int cmp_exact(char *source, int index)
{
return 1;
}
static void set_key(char *key, int index)
{
/* convert key to UTF-16LE */
saved_len[index] = enc_to_utf16(saved_key[index], PLAINTEXT_LENGTH,
(UTF8*)key, strlen(key));
if (saved_len[index] < 0)
saved_len[index] = strlen16(saved_key[index]);
saved_len[index] <<= 1;
}
static char *get_key(int index)
{
return (char*)utf16_to_enc(saved_key[index]);
}
struct fmt_main fmt_office = {
{
FORMAT_LABEL,
FORMAT_NAME,
ALGORITHM_NAME,
BENCHMARK_COMMENT,
BENCHMARK_LENGTH,
0,
PLAINTEXT_LENGTH,
BINARY_SIZE,
BINARY_ALIGN,
SALT_SIZE,
SALT_ALIGN,
MIN_KEYS_PER_CRYPT,
MAX_KEYS_PER_CRYPT,
FMT_CASE | FMT_8_BIT | FMT_OMP | FMT_UNICODE | FMT_ENC | FMT_BLOB,
{
"MS Office version",
"iteration count",
},
{ FORMAT_TAG_OFFICE },
office_tests
}, {
init,
done,
fmt_default_reset,
fmt_default_prepare,
ms_office_common_valid,
fmt_default_split,
ms_office_common_binary,
ms_office_common_get_salt,
{
ms_office_common_version,
ms_office_common_iteration_count,
},
fmt_default_source,
{
fmt_default_binary_hash_0,
fmt_default_binary_hash_1,
fmt_default_binary_hash_2,
fmt_default_binary_hash_3,
fmt_default_binary_hash_4,
fmt_default_binary_hash_5,
fmt_default_binary_hash_6
},
fmt_default_salt_hash,
NULL,
set_salt,
set_key,
get_key,
fmt_default_clear_keys,
crypt_all,
{
fmt_default_get_hash
},
cmp_all,
cmp_one,
cmp_exact
}
};
#endif /* plugin stanza */