forked from edizquierdo/CE_locomotion
-
Notifications
You must be signed in to change notification settings - Fork 1
/
VectorMatrix.h
executable file
·466 lines (382 loc) · 10.8 KB
/
VectorMatrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// ********************************
// Classes for vectors and matrices
//
// RDB 7/24/95
// ********************************
#pragma once
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <cstdarg>
using namespace std;
#define DEBUG 0
// *******
// TVector
// *******
// The TVector class declaration
template<class EltType>
class TVector {
public:
// Constructors
TVector(void);
TVector(int LowerBound, int UpperBound);
TVector(TVector<EltType> &v);
// The destructor
~TVector();
// Accessors
int Size(void) {return ub - lb + 1;};
void SetSize(int NewSize) {SetBounds(lb,NewSize+lb-1);};
int LowerBound(void) {return lb;};
void SetLowerBound(int NewLB) {SetBounds(NewLB,ub);};
int UpperBound(void) {return ub;};
void SetUpperBound(int NewUB) {SetBounds(lb,NewUB);};
void SetBounds(int NewLB, int NewUB);
// Other stuff
void FillContents(EltType value);
void PushFront(EltType value);
void InitializeContents(EltType v1,...);
// Vector i/o
void BinaryWriteVector(ofstream& bofs);
void BinaryReadVector(ifstream& binfs);
// Overloaded operators
EltType &operator[](int index)
{
#if !DEBUG
return Vector[index];
#else
return (*this)(index);
#endif
};
inline EltType &operator()(int index);
inline TVector<EltType> &operator=(TVector<EltType> &v);
protected:
int lb, ub;
EltType *Vector;
};
// The default constructor
template<class EltType>
TVector<EltType>::TVector(void)
{
lb = 1; ub = 0;
}
// The standard constructor
template<class EltType>
TVector<EltType>::TVector(int LB, int UB)
{
lb = 1; ub = 0;
SetBounds(LB,UB);
}
// The copy constructor
template<class EltType>
TVector<EltType>::TVector(TVector<EltType> &v)
{
lb = 1; ub = 0;
SetBounds(v.LowerBound(),v.UpperBound());
for (int i = lb; i <= ub; i++)
Vector[i] = v[i];
}
// The destructor
template<class EltType>
TVector<EltType>::~TVector(void)
{
SetSize(0);
}
// Set the bounds of a TVector, reallocating space as necessary and
// preserving as much of the previous contents as possible
template<class EltType>
void TVector<EltType>::SetBounds(int newlb, int newub)
{
// Only do it if we have to
if (lb == newlb && ub == newub) return;
// Save the old info and init the new
EltType *OldVector = Vector;
int oldlb = lb, oldub = ub, oldlen = ub - lb + 1, len = newub - newlb + 1;
lb = newlb; ub = newub;
// No negative length vectors allowed!
if (len < 0) {
cerr << "Attempt to allocate a negative length TVector\n";
exit(0);
}
// Allocate the new storage and copy as much of the old info as possible
if (len != 0) {
Vector = new EltType[len] - lb;
if (oldlen != 0)
for (int i = oldlb, j = lb; i <= oldub && j <= ub; i++,j++)
Vector[j] = OldVector[i];
}
// Recover the old storage
if (oldlen != 0) delete [] (OldVector + oldlb);
}
// Fill a TVector with the given value
template<class EltType>
void TVector<EltType>::FillContents(EltType value)
{
for (int i = lb; i <= ub; i++)
Vector[i] = value;
}
// Push an element to the front
// The whole lists shifts and the last element is dropped
// Added by Eduardo Izquierdo
template<class EltType>
void TVector<EltType>::PushFront(EltType value)
{
for (int i = ub; i > lb; i-=1){
Vector[i] = Vector[i-1];
}
Vector[lb] = value;
}
// Initialize a TVector with given contents
template<class EltType>
void TVector<EltType>::InitializeContents(EltType v1,...)
{
va_list ap;
if (Size() == 0) return;
Vector[lb] = v1;
va_start(ap,v1);
for (int i = lb+1; i <= ub; i++)
Vector[i] = va_arg(ap,EltType);
va_end(ap);
}
// Overload the () operator to provide safe indexing
template<class EltType>
inline EltType &TVector<EltType>::operator()(int index)
{
if (index < lb || index > ub)
{
cerr << "Vector index " << index << " out of bounds\n";
exit(0);
}
return Vector[index];
}
// Overload the = operator to copy one TVector to another
template<class EltType>
inline TVector<EltType> &TVector<EltType>::operator=(TVector<EltType> &v)
{
SetBounds(v.LowerBound(),v.UpperBound());
for (int i = lb; i <= ub; i++)
Vector[i] = v[i];
return *this;
}
// Overload the stream insertion operator to recognize a TVector
template<class EltType>
ostream& operator<<(ostream& os, TVector<EltType>& v)
{
for (int i = v.LowerBound(); i < v.UpperBound(); i++)
os << v[i] << " ";
if (v.Size() > 0) os << v[v.UpperBound()];
return os;
}
// Read a vector from a file
// Added by Thomas Buhrmann and Eduardo Izquierdo
template<class EltType>
istream& operator>>(istream& is, TVector<EltType>& v)
{
for (int i = v.LowerBound(); i < v.UpperBound(); i++)
is >> v[i];
if (v.Size() > 0) is >> v[v.UpperBound()];
return is;
}
// Write and read a TVector in binary
// (Thanks to Chad Seys)
template<class EltType>
void TVector<EltType>::BinaryWriteVector(ofstream& bofs)
{
int thisSize = ub-lb+1;
bofs.write((const char*) &(lb), sizeof(lb));
bofs.write((const char*) &(ub), sizeof(ub));
for (int i = lb; i < ub; i++) {
bofs.write((const char *) &(Vector[i]), sizeof(Vector[i]));
}
if (thisSize > 0) {
bofs.write((const char *) &(Vector[ub]), sizeof(Vector[ub]));
}
}
template<class EltType>
void TVector<EltType>::BinaryReadVector(ifstream& bifs)
{
int LB;
int UB;
bifs.read((char *) &(LB), sizeof(LB));
bifs.read((char *) &(UB), sizeof(UB));
SetLowerBound(LB);
SetUpperBound(UB);
for (int i = LB; i <= UB; ++i) {
bifs.read((char *) &(Vector[i]),sizeof(Vector[i]));
}
}
// *******
// TMatrix
// *******
// The TMatrix class declaration
template<class EltType>
class TMatrix {
public:
// Constructors
TMatrix(void);
TMatrix(int RowLowerBound, int RowUpperBound, int ColumnLowerBound, int ColumnUpperBound);
TMatrix(TMatrix<EltType> &m);
// The destructor
~TMatrix();
// Accessors
int RowSize(void) {return rowlen;};
void SetRowSize(int NewSize) {SetBounds(lb1,lb1+NewSize-1,lb2,ub2);};
int ColumnSize(void) {return collen;};
void SetColumnSize(int NewSize) {SetBounds(lb1,ub1,lb2,lb2+NewSize-1);};
void SetSize(int NewRowSize,int NewColSize)
{SetBounds(lb1,lb1+NewRowSize-1,lb2,lb2+NewColSize-1);};
int RowLowerBound(void) {return lb1;};
void SetRowLowerBound(int newlb1) {SetBounds(newlb1,ub1,lb2,ub2);};
int RowUpperBound(void) {return ub1;};
void SetRowUpperBound(int newub1) {SetBounds(lb1,newub1,lb2,ub2);};
int ColumnLowerBound(void) {return lb2;};
void SetColumnLowerBound(int newlb2) {SetBounds(lb1,ub1,newlb2,ub2);};
int ColumnUpperBound(void) {return ub2;};
void SetColumnUpperBound(int newub2) {SetBounds(lb1,ub1,lb2,newub2);};
void SetBounds(int newlb1, int newub1, int newlb2, int newub2);
// Overloaded operators
EltType* operator[](int index)
{
#if !DEBUG
return Matrix[index];
#else
if (index < lb1 || index > ub1)
{
cerr << "Matrix index " << index << " out of bounds\n";
exit(0);
}
return Matrix[index];
#endif
};
inline EltType &operator()(int i,int j);
inline TMatrix<EltType> &operator=(TMatrix<EltType> &m);
// Other stuff
void FillContents(EltType x);
void InitializeContents(EltType v1,...);
protected:
int lb1, ub1, lb2, ub2, collen, rowlen;
EltType **Matrix;
};
// The default constructor
template<class EltType>
TMatrix<EltType>::TMatrix(void)
{
lb1 = lb2 = 1; ub1 = ub2 = 0; collen = 0; rowlen = 0;
}
// The standard constructor
template<class EltType>
TMatrix<EltType>::TMatrix(int RowLowerBound, int RowUpperBound,
int ColumnLowerBound, int ColumnUpperBound)
{
lb1 = lb2 = 1; ub1 = ub2 = 0; collen = 0; rowlen = 0;
SetBounds(RowLowerBound,RowUpperBound,ColumnLowerBound,ColumnUpperBound);
}
// The copy constructor
template<class EltType>
TMatrix<EltType>::TMatrix(TMatrix<EltType> &m)
{
lb1 = lb2 = 1; ub1 = ub2 = 0; collen = 0; rowlen = 0;
SetBounds(m.RowLowerBound(),m.RowUpperBound(),m.ColumnLowerBound(),m.ColumnUpperBound());
for (int i = lb1; i <= ub1; i++)
for (int j = lb2; j <= ub2; j++)
Matrix[i][j] = m[i][j];
}
// The destructor
template<class EltType>
TMatrix<EltType>::~TMatrix()
{
SetSize(0,0);
}
// Set the bounds of a TMatrix to the given values, reallocating space as necessary.
// Note that, unlike for TVectors, we do not try to preserve the previous contents.
template<class EltType>
void TMatrix<EltType>::SetBounds(int newlb1, int newub1, int newlb2, int newub2)
{
// Only do it if we have to
if (newlb1 == lb1 && newub1 == ub1 && newlb2 == lb2 && newub2 == ub2) return;
// If storage is currently allocated, reclaim it
if (collen != 0) {
if (rowlen != 0)
for (int i = lb1; i <= ub1; i++)
delete (Matrix[i] + lb2);
delete [] (Matrix + lb1);
}
// Save the new bounds info
lb1 = newlb1; ub1 = newub1; lb2 = newlb2; ub2 = newub2;
collen = ub1 - lb1 + 1; rowlen = ub2 - lb2 + 1;
// No negative sizes allowed!
if (collen < 0 || rowlen < 0) {
cerr << "Attempt to allocate a negative sized TMatrix\n";
exit(0);
}
// If new storage is needed, allocate it
if (collen != 0) {
Matrix = new EltType*[collen] - lb1;
if (rowlen != 0)
for (int i = lb1; i <= ub1; i++)
Matrix[i] = new EltType[rowlen] - lb2;
else
for (int i = lb1; i <= ub1; i++)
Matrix[i] = NULL;
}
}
// Fill a TMatrix with the given value
template<class EltType>
void TMatrix<EltType>::FillContents(EltType x)
{
for (int i = lb1; i <= ub1; i++)
for (int j = lb2; j <= ub2; j++)
Matrix[i][j] = x;
}
// Initialize a TMatrix with given contents
template<class EltType>
void TMatrix<EltType>::InitializeContents(EltType v1,...)
{
va_list ap;
if (rowlen == 0 || collen == 0) return;
Matrix[lb1][lb2] = v1;
va_start(ap,v1);
for (int j = lb2+1; j <= ub2; j++)
Matrix[lb1][j] = va_arg(ap,EltType);
for (int i = lb1+1; i <= ub1; i++)
for (int j = lb2; j <= ub2; j++)
Matrix[i][j] = va_arg(ap,EltType);
va_end(ap);
}
// Overload the () operator to provide safe indexing
template<class EltType>
inline EltType &TMatrix<EltType>::operator()(int i,int j)
{
if (i < lb1 || i > ub1 || j < lb2 || j > ub2)
{
cerr << "Matrix indices (" << i << "," << j << ") out of bounds\n";
exit(0);
}
return Matrix[i][j];
}
// Overload the = operator to copy one TMatrix to another
template<class EltType>
inline TMatrix<EltType> &TMatrix<EltType>::operator=(TMatrix<EltType> &m)
{
SetBounds(m.RowLowerBound(),m.RowUpperBound(),m.ColumnLowerBound(),m.ColumnUpperBound());
for (int i = lb1; i <= ub1; i++)
for (int j = lb2; j <= ub2; j++)
Matrix[i][j] = m[i][j];
return *this;
}
// Overload the stream insertion operator to recognize a TMatrix
template<class EltType>
ostream& operator<<(ostream& os, TMatrix<EltType> &m)
{
int i,j;
for (i = m.RowLowerBound(); i < m.RowUpperBound(); i++) {
for (j = m.ColumnLowerBound(); j < m.ColumnUpperBound(); j++)
os << m[i][j] << " ";
if (m.ColumnSize() > 0) os << m[i][m.ColumnUpperBound()] << endl;
}
if (m.RowSize() > 0) {
for (j = m.ColumnLowerBound(); j < m.ColumnUpperBound(); j++)
os << m[m.RowUpperBound()][j] << " ";
if (m.ColumnSize() > 0) os << m[m.RowUpperBound()][m.ColumnUpperBound()];
}
return os;
}