👍🎉 First off, thanks for taking the time to contribute! 🎉👍
The following is a set of guidelines for contributing to Rust Bitcoin implementation and other Rust Bitcoin-related projects, which are hosted in the Rust Bitcoin Community on GitHub. These are mostly guidelines, not rules. Use your best judgment, and feel free to propose changes to this document in a pull request.
- General
- Communication channels
- Asking questions
- Contribution workflow
- Coding conventions
- Security
- Testing
- Going further
The Rust Bitcoin project operates an open contributor model where anyone is welcome to contribute towards development in the form of peer review, documentation, testing and patches.
Anyone is invited to contribute without regard to technical experience, "expertise", OSS experience, age, or other concern. However, the development of standards & reference implementations demands a high-level of rigor, adversarial thinking, thorough testing and risk-minimization. Any bug may cost users real money. That being said, we deeply welcome people contributing for the first time to an open source project or pick up Rust while contributing. Don't be shy, you'll learn.
Communication about Rust Bitcoin happens primarily in #bitcoin-rust IRC chat on Libera with the logs available at https://gnusha.org/bitcoin-rust/ (starting from Jun 2021 and now on) and https://gnusha.org/rust-bitcoin/ (historical archive before Jun 2021).
Discussion about code base improvements happens in GitHub issues and on pull requests.
Major projects are tracked here. Major milestones are tracked here.
Note: Please don't file an issue to ask a question. You'll get faster results by using the resources below.
We have a dedicated developer channel on IRC, #bitcoin-rust@libera.chat where you may get helpful advice if you have questions.
The codebase is maintained using the "contributor workflow" where everyone without exception contributes patch proposals using "pull requests". This facilitates social contribution, easy testing and peer review.
To contribute a patch, the workflow is a as follows:
- Fork Repository
- Create topic branch
- Commit patches
Please keep commits should atomic and diffs easy to read. For this reason do not mix any formatting fixes or code moves with actual code changes. Further, each commit, individually, should compile and pass tests, in order to ensure git bisect and other automated tools function properly.
Please cover every new feature with unit tests.
When refactoring, structure your PR to make it easy to review and don't hesitate to split it into multiple small, focused PRs.
Commits should cover both the issue fixed and the solution's rationale. Please keep these guidelines in mind.
To facilitate communication with other contributors, the project is making use of GitHub's "assignee" field. First check that no one is assigned and then comment suggesting that you're working on it. If someone is already assigned, don't hesitate to ask if the assigned party or previous commenters are still working on it if it has been awhile.
The main library development happens in the master
branch. This branch must
always compile without errors (using GitHub CI). All external contributions are
made within PRs into this branch.
Prerequisites that a PR must satisfy for merging into the master
branch:
- each commit within a PR must compile and pass unit tests with no errors, with every feature combination (including compiling the fuzztests) on some reasonably recent compiler (this is partially automated with CI, so the rule is that we will not accept commits which do not pass GitHub CI);
- the tip of any PR branch must also compile and pass tests with no errors on MSRV (check [README.md] on current MSRV requirements) and pass fuzz tests on nightly rust;
- contain all necessary tests for the introduced functional (either as a part of commits, or, more preferably, as separate commits, so that it's easy to reorder them during review and check that the new tests fail without the new code);
- contain all inline docs for newly introduced API and pass doc tests;
- be based on the recent
master
tip from the original repository at https://github.com/rust-bitcoin/rust-bitcoin.
NB: reviewers may run more complex test/CI scripts, thus, satisfying all the
requirements above is just a preliminary, but not necessary sufficient step for
getting the PR accepted as a valid candidate PR for the master
branch.
PR authors may also find it useful to run the following script locally in order to check that each of the commits within the PR satisfies the requirements above, before submitting the PR to review:
RUSTUP_TOOLCHAIN=1.41.1 ./contrib/test.sh
Please replace the value in RUSTUP_TOOLCHAIN=1.41.1
with the current MSRV from
[README.md].
NB: Please keep in mind that the script above replaces Cargo.lock
file, which
is necessary to support current MSRV, incompatible with stable
and newer cargo
versions.
Anyone may participate in peer review which is expressed by comments in the pull request. Typically, reviewers will review the code for obvious errors, as well as test out the patch set and opine on the technical merits of the patch. Please, first review PR on the conceptual level before focusing on code style or grammar fixes.
Pull request merge requirements:
- all CI test should pass,
- at least two "accepts"/ACKs from the repository maintainers
- no reasonable "rejects"/NACKs from anybody who reviewed the code.
Current list of the project maintainers:
- Andrew Poelstra
- Steven Roose
- Matt Corallo
- Elichai Turkel
- Sanket Kanjalkar
- Martin Habovštiak
- Riccardo Casatta
- Tobin Harding
Library reflects Bitcoin Core approach whenever possible.
The repository currently does not use rustfmt
.
New changes may format the code with rustfmt
, but they should not re-format
any existing code for maintaining diff size small, keeping git blame
intact and
reduce review time. Repository maintainers may not review PRs introducing large
blocks of re-formatted code.
You may check the discussion on the formatting and how it is planned to coordinate it with crate refactoring
For the new code it is recommended to follow style of the existing codebase and avoid any end-line space characters.
Naming of data structures/enums and their fields/variants must follow names used in Bitcoin Core, with the following exceptions:
- the case should follow Rust standards (i.e. PascalCase for types and snake_case for fields and variants);
- omit
C
-prefixes.
Use of unsafe
code is prohibited unless there is a unanimous decision among
library maintainers on the exclusion from this rule. In such cases there is a
requirement to test unsafe code with sanitizers including Miri.
Security is the primary focus for this library; disclosure of security vulnerabilities helps prevent user loss of funds. If you believe a vulnerability may affect other implementations, please disclose this information according to the security guidelines, work on which is currently in progress. Before it is completed, feel free to send disclosure to Andrew Poelstra, apoelstra@wpsoftware.net, encrypted with his public key from https://www.wpsoftware.net/andrew/andrew.gpg.
Related to the security aspect, rust bitcoin developers take testing very seriously. Due to the modular nature of the project, writing new test cases is easy and good test coverage of the codebase is an important goal. Refactoring the project to enable fine-grained unit testing is also an ongoing effort.
Fuzzing is heavily encouraged: feel free to add related material under fuzz/
Mutation testing is planned; any contributions helping with that are highly welcome!
You may be interested in the guide by Jon Atack on How to review Bitcoin Core PRs and How to make Bitcoin Core PRs. While there are differences between the projects in terms of context and maturity, many of the suggestions offered apply to this project.
Overall, have fun :)