-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcreate_sentences.py
37 lines (28 loc) · 1015 Bytes
/
create_sentences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os
import re
import csv
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
def create_files():
"""
Takes the original Humicroedit dataset and creates a file with unique sentences for processing
"""
train = pd.read_csv(os.path.join("data", "train.csv"))
dev = pd.read_csv(os.path.join("data", "dev.csv"))
### FOR HumorNMT ###
full = pd.concat([train, dev])
edited = []
original = []
for index, (row) in full.iterrows():
edit = re.sub(r'\<.*?/\>', row["edit"], row["original"])
edited.append(edit)
assert "\<" not in edit, "did not replace, error"
original.append(row["original"].replace("<", "").replace("/>", ""))
full["edited_version"] = edited
full["original_clean"] = original
nmt = full.drop_duplicates(subset=["original"])
print("Unique sentences:", nmt.shape[0])
nmt.to_csv(os.path.join("data", "full_unique.csv"))
if __name__ == "__main__":
create_files()