-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrandom_translate.py
55 lines (45 loc) · 1.99 KB
/
random_translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import random
import nltk
from nltk import pos_tag
from nltk.corpus import wordnet as wn
from nltk.corpus import words
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
import pandas as pd
import numpy as np
ALL_NOUNS = list(wn.all_synsets(wn.NOUN))
ALL_ADJ = list(wn.all_synsets(wn.ADJ))
ALL_VERBS = list(wn.all_synsets(wn.VERB))
def nltk_synset_to_word(synset: nltk.corpus.reader.wordnet.Synset) -> str:
""" A helper function to turn a synset to the actual word """
return synset.name().split(".")[0].replace("_", " ")
def random_translate(text: str, prob: float = 0.25) -> str:
"""
An intelligent random baseline to randomly change verbs, nouns, or adjectives with `prob` probability.
Will keep the same capitalization format as the original word.
Uses NLTK to get random verbs, nouns, or adjectives
Input:
text: the string to translate randomly
prob: the probability with which to flip words
Returns:
the randomly translated string
"""
final_sent = text
tokens = nltk.word_tokenize(text)
tokens_tag = pos_tag(tokens)
for token, pos in tokens_tag:
if pos in ["NN", "NNP", "JJ", "VB", 'VBN', "VBG"]:
if random.random() < prob:
token_caps = token[0].isupper()
if pos in ["NN", "NNP"]:
new_word = nltk_synset_to_word(random.choice(ALL_NOUNS))
if pos == "JJ":
new_word = nltk_synset_to_word(random.choice(ALL_ADJ))
if pos in ["VB", "VBN", "VBG"]:
new_word = nltk_synset_to_word(random.choice(ALL_VERBS))
chosen_word = new_word if not token_caps else new_word[0].upper() + new_word[1:]
final_sent = final_sent.replace(token, chosen_word, 1)
return final_sent
if __name__ == "__main__":
print(random_translate("Could Roy Moore Be Expelled From The Senate If Elected?"))
print(random_translate("Connecticut pastor charged with stealing $8G in electricity"))