-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRNAseq.Rmd
467 lines (365 loc) · 18.2 KB
/
RNAseq.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
---
title: "Differential expression for sleep deprivation RNA-seq."
author: "Jakub Orzechowski Westholm"
output:
html_document: default
pdf_document: default
html_notebook: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_knit$set(root.dir = '~/tmp/') ## Change this to appropriate directory
```
```{r date}
cat(paste(Sys.Date()))
```
This document contains the RNA-seq analysis for the study by Cedernaes et al. 2018.
### Load libraries
```{r libs, results='hide', message=FALSE, warning=FALSE}
library(knitr)
library(edgeR)
library(biomaRt)
library(tidyverse)
library(gage)
library(gageData)
library(pathview)
library(VennDiagram)
library(pheatmap)
```
### Helper functions
```{r functions}
# Run differential expression analysis with EdgeR.
# Inputs:
# - a count table (rows are genes, columns are samples)
# - which model to use (a string representing a formula)
# - a table with phenotype data (rows are samples, columns are phenotypes etc.)
# - minimum threshold of counts per million (CPM) for filtering genes (default=1)
# - minimum number of samples a gene has to have CPM above the given threshold (default=5)
# - if coeficiant of variation should be plotted (default=TRUE)
# - the highest p-value to include in the output (default=1, include all genes)
# - an array mapping ENSG ids to gene names
# - an array mapping ENSG ids to Entrez ids
# Output:
# - A table of differential expression results, with the following columns:
# "logFC", "logCPM", "LR", "PValue", "FDR", "gene_names", "entrez"
run.edger.analys <- function(use.counts, use.model, sample.tab, min.cpm=1, min.samples=5,
plot.bcv=TRUE, max.pval=1, genenames=NULL, entrez=NULL){
y <- DGEList(counts=use.counts)
keep <- rowSums(cpm(y)>min.cpm) >= min.samples
y <- y[keep, keep.lib.sizes=FALSE]
use.sample.tab <- sample.tab[colnames(use.counts),]
design <- model.matrix(as.formula(use.model), data=use.sample.tab )
## Normalize
y <- calcNormFactors(y)
## Estimating disperions
y <- estimateGLMCommonDisp(y,design)
y <- estimateGLMTrendedDisp(y,design)
y <- estimateGLMTagwiseDisp(y,design)
if(plot.bcv){
plotBCV(y)
}
## Testing for differential expression
fit <- glmFit(y, design)
lrt <- glmLRT(fit)
out.tab <- topTags(lrt, n=1000000, p.value=max.pval)$table
## Add gene info
if(!is.null(genenames)){
out.tab <- cbind(out.tab, gene_names=genenames[rownames(out.tab)])
}
if(!is.null(entrez)){
out.tab <- cbind(out.tab, entrez=entrez[rownames(out.tab)])
}
return(out.tab)
}
# Volcano plot: log fold change on x-axis and -log (pval) on y-axis.
# Input:
# - Table with differential expression (with log fold change on col 1 and p-val in col 5)
# - p-value threshold
# - fold change threshold
# - Title
# Plots a volcano plot. Genes above the thresholds are highlighted with different colors.
volcano.plot <- function(top.tab, pval.cutoff=0.05, fc.cutoff=1, main=""){
res <- cbind(top.tab[,1],-log10(top.tab[,5]))
rownames(res) <- rownames(top.tab)
colnames(res) <- c("logFC", ylab="-log10(P)")
plot(res, pch=20, cex=0.5, xlab="logFC", ylab="-log10 P",main=main)
# Add colored points: red if padj<0.05, orange of log2FC>1, green if both)
points(subset(res, res[,2] > -1* log10(pval.cutoff) ), pch=20, cex=0.5, col="red")
points(subset(res, abs(res[,1]) > fc.cutoff), pch=20, cex=0.5, col="green")
}
# Run GAGE pathway anslysis.
# Input:
# - Table with differential expression, with the following columns:
# "logFC", "logCPM", "LR", "PValue", "FDR", "gene_names", "entrez"
# - List of gene sets, mapping gene set name to Entrez gene ids.
# - Wich measure to use, "logFC" or "logP" ( -1*log(P)*sign(logFC) )
# Output is a list with 3 elements ("greater", "less", "stats"), output by gage.
# See ?gage for more info.
run.gage <- function(top.tab, gene.sets, measure="logFC"){
use.genes <- !is.na(top.tab$entrez)
use.measure <- NULL
if(measure=="logFC"){
use.measure <- top.tab$logFC[use.genes]
}
if(measure=="logP"){
use.measure <- sign(top.tab$logFC[use.genes])*-1*log10(top.tab$PValue[use.genes])
}
names(use.measure) <- top.tab$entrez[use.genes]
return( gage(use.measure, gsets = gene.sets, ref = NULL, samp = NULL, use.fold = TRUE, saaTest = gs.KSTest, rank.test = TRUE) )
}
# Print top gene sets from GAGE analysis.
# Input:
# - output from GAGE
# - threshold on the q-value (default=0.01)
# - direction of change ("up" or "down")
top.gage.sets <- function(gage.data, qval.threshold=0.05, change){
use.cols <- c(2,4,5)
tmp.data <- NULL
if(change=="up"){
tmp.data <- gage.data[[1]]
}
else if(change=="down"){
tmp.data <- gage.data[[2]]
}else{
stop(paste("Error in top.gage.sets! Expected change=\"up\" or \"down\", got", change))
}
# Format output, round numbers and truncate long strings.
out.tab <- tmp.data[which(tmp.data[,"q.val"] < qval.threshold), use.cols ]
if(!is.null(dim(out.tab))){
if(nrow(out.tab) == 0){
return(out.tab)
}
}
if(is.null(dim(out.tab))){ # ugly hack to catch error if there's only one gene set.
out.tab <- as.data.frame(t(out.tab))
rownames(out.tab) <- rownames(tmp.data)[which(tmp.data[,"q.val"] < qval.threshold)]
}
rownames(out.tab) <- strtrim(rownames(out.tab), 50)
out.tab[,"stat.mean"] <- round(out.tab[,"stat.mean"], 2)
out.tab[,"q.val"] <- signif(out.tab[,"q.val"], 2)
return( out.tab )
}
## Compared differentially expressed genes in two tissues, and plot a Venn diagram. Input:
## - EdgeR output for tissue 1 (adipose)
## - EdgeR output for tissue 2 (muscle)
## Output:
## - Venn diagram with overlaps between up- and down.regulated genes in the two tissues.
compare.tissues.venn <- function(edger.a, edger.m, max.pval){
a.up.genes <- rownames(edger.a[which(edger.a$FDR < max.pval & edger.a$logFC > 0),])
a.down.genes <- rownames(edger.a[which(edger.a$FDR < max.pval & edger.a$logFC < 0),])
m.up.genes <- rownames(edger.m[which(edger.m$FDR < max.pval & edger.m$logFC > 0),])
m.down.genes <- rownames(edger.m[which(edger.m$FDR < max.pval & edger.m$logFC < 0),])
draw.quad.venn(
area1 = length(a.up.genes),
area2 = length(a.down.genes),
area3 = length(m.up.genes),
area4 = length(m.down.genes),
n12 = 0,
n13 = length(intersect(a.up.genes, m.up.genes)),
n14 = length(intersect(a.up.genes, m.down.genes)),
n23 = length(intersect(a.down.genes, m.up.genes)),
n24 = length(intersect(a.down.genes, m.down.genes)),
n34 = 0,
n123 = 0,
n124 = 0,
n134 = 0,
n234 = 0,
n1234 = 0,
category = c("Adipose Up", "Adipose Down", "Muscle Up", "Muscle down"),
fill = c("orange", "red", "green", "blue"),
lty = "blank",
cex = 1.4,
cat.cex = 1.3,
cat.col = rep("black", 4)
)
}
```
### Load and organize data
```{r load_data}
## read gene counts
gene.count.file <- "all_counts.txt"
count.tab <- read.table(gene.count.file, sep="\t", header=TRUE)
colnames(count.tab) <- gsub("^X", "", colnames(count.tab), perl=TRUE) # Clean up column names in count table
## Read sample sheet
sample.file <- "rna_seq_data_table.csv"
sample.tab <- read.csv(sample.file, as.is = TRUE)
rownames(sample.tab) <- gsub("\"", "", apply(sample.tab[,3:1], 1, function(x){paste(x,collapse = ".")})) # Clean up row names in sample sheet
head(sample.tab)
## Fetch gene info. Run this once. Then just reload saved object.
ensembl = useEnsembl(biomart="ensembl",GRCh=37, dataset="hsapiens_gene_ensembl")
gene.annot.tab <- getBM(attributes=c('ensembl_gene_id','gene_biotype','entrezgene', 'external_gene_name'), mart = ensembl)
## Clean up data: if there are several entries with same ensembl_gene_id, use the first
gene.annot.tab %>%
group_by(ensembl_gene_id) %>%
summarise_each(funs(paste(sort(.), collapse=","))) %>%
extract(external_gene_name, "external_gene_name", "([^,]+),?.*") %>%
extract(gene_biotype, "gene_biotype", "([^,]+),?.*") %>%
extract(entrezgene, "entrezgene", "([^,]+),?.*") -> gene.annot.tab
head(gene.annot.tab)
biotypes <- gene.annot.tab$gene_biotype
names(biotypes) <- gene.annot.tab$ensembl_gene_id
genenames <- gene.annot.tab$external_gene_name
names(genenames) <- gene.annot.tab$ensembl_gene_id
entrez <- gene.annot.tab$entrezgene
names(entrez) <- gene.annot.tab$ensembl_gene_id
protein.coding.genes <- names(biotypes)[biotypes == "protein_coding"]
```
Select gene expression data to look at
```{r filter_data}
gene.filter <- protein.coding.genes
count.filtered <- count.tab[intersect(rownames(count.tab),gene.filter),]
count.filtered.a <- count.filtered[, grep(".A", colnames(count.filtered), fixed = TRUE)]
count.filtered.m <- count.filtered[, grep(".M", colnames(count.filtered), fixed = TRUE)]
```
# Differential expression with EdgeR
```{r edger}
use.model <- "~Subject_ID + Sleep"
min.cpm <- 1
min.samples <- 5
edger.a <- run.edger.analys(count.filtered.a, use.model, sample.tab, min.cpm=min.cpm, min.samples=min.samples, genenames=genenames, entrez=entrez)
edger.m <- run.edger.analys(count.filtered.m, use.model, sample.tab, min.cpm=min.cpm, min.samples=min.samples, genenames=genenames, entrez=entrez)
head(edger.a)
```
Number of differentially expressed genes
```{r nr_genes}
max.pval <- 0.05
length(which(edger.a$FDR < max.pval))
length(which(edger.m$FDR < max.pval))
```
Write lists of differentially expressed genes to text files.
```{r gene_lists}
write.table(edger.a[edger.a$FDR < 0.05 & edger.a$logFC > 0,], file="adipose_up.txt", row.names = T, col.names = T, quote = F)
write.table(edger.a[edger.a$FDR < 0.05 & edger.a$logFC < 0,], file="adipose_down.txt", row.names = T, col.names = T, quote = F)
write.table(edger.m[edger.m$FDR < 0.05 & edger.m$logFC > 0,], file="muscle_up.txt", row.names = T, col.names = T, quote = F)
write.table(edger.m[edger.m$FDR < 0.05 & edger.m$logFC < 0,], file="muscle_down.txt", row.names = T, col.names = T, quote = F)
```
# Overlaps between differentially regulated genes from adipse and muscle
```{r tissue_overlaps, fig.width=10, fig.height=10, fig.align='center', results=FALSE}
compare.tissues.venn(edger.a, edger.m, max.pval)
```
## Volcano plots
```{r volcano_plots, fig.width=14, fig.height=7, fig.align='center'}
par(mfrow=c(1,2))
volcano.plot(edger.a, pval.cutoff=0.05, fc.cutoff=1, main="Adipose")
volcano.plot(edger.m, pval.cutoff=0.05, fc.cutoff=1, main="Muscle")
```
## Heatmaps of differentially expressed genes
```{r heatmaps_all_de, fig.width=3, fig.height=10, fig.align='center'}
scale_rows = function(x){
m = apply(x, 1, mean, na.rm = T)
s = apply(x, 1, sd, na.rm = T)
return((x - m) / s)
}
## Calculate log CPM (counts per million mapped reads)
logcpm.a <- cpm(DGEList(count.filtered.a), prior.count=2, log=TRUE)
logcpm.m <- cpm(DGEList(count.filtered.m), prior.count=2, log=TRUE)
rownames(logcpm.a) <- genenames[rownames(logcpm.a)]
rownames(logcpm.m) <- genenames[rownames(logcpm.m)]
## Reorder columns, and rescale (to mean=0 and sd=1)
plot.data.a <- logcpm.a[,c(seq(from=1, to=30,by=2), seq(from=2, to=30, by=2))]
plot.data.m <- logcpm.m[,c(seq(from=1, to=30,by=2), seq(from=2, to=30, by=2))]
plot.data.am <- cbind(scale_rows(plot.data.a), scale_rows(plot.data.m))
pval.cutoff = 0.05
use.genes.a <- genenames[rownames(edger.a)[edger.a$FDR<pval.cutoff]]
use.genes.m <- genenames[rownames(edger.m)[edger.m$FDR<pval.cutoff]]
use.genes.am <- union(use.genes.a, use.genes.m)
names(use.genes.am) <- use.genes.am
## Plot (rescaled) expression levels
de.exp <- cbind(adipose_sms=apply(plot.data.a[use.genes.am,1:15],1,mean),
adipose_smw=apply(plot.data.a[use.genes.am,16:30],1,mean),
muscle_sms=apply(plot.data.m[use.genes.am,1:15],1,mean),
muscle_smw=apply(plot.data.m[use.genes.am,16:30],1,mean))
pheatmap(de.exp[use.genes.a,], cluster_rows=TRUE, cluster_cols=FALSE, scale="row",
annotation_col=NULL, main="Diff exp genes in adipose", fontsize_row=5)
pheatmap(de.exp[use.genes.m,], cluster_rows=TRUE, cluster_cols=FALSE, scale="row",
annotation_col=NULL, main="Diff exp genes in muscle", fontsize_row=5)
## Plot log fold changes
de.diff.exp.a <- do.call("cbind", lapply(seq(from=1, to=30, by=2), function(i){ logcpm.a[use.genes.am ,i+1] - logcpm.a[use.genes.am ,i] }))
de.diff.exp.m <- do.call("cbind", lapply(seq(from=1, to=30, by=2), function(i){ logcpm.m[use.genes.am ,i+1] - logcpm.m[use.genes.am, i] }))
de.diff.exp <- cbind(adipose=apply(de.diff.exp.a,1,mean),
muscle=apply(de.diff.exp.m,1,mean))
de.diff.exp <- de.diff.exp[order(apply(de.diff.exp,1,mean)),] ## Order on average fc
paletteLength <- 50
myColor <- colorRampPalette(c("red", "white", "blue"))(paletteLength)
max.fc <- ceiling(max(abs(de.diff.exp)))
pheatmap(de.diff.exp[use.genes.a,], cluster_rows=TRUE, cluster_cols=FALSE, scale="none", annotation_col=NULL, main="Diff exp genes in adipose, log fc", fontsize_row=5, color = myColor, breaks = seq(from=-1*max.fc, to=max.fc, length.out=paletteLength))
pheatmap(de.diff.exp[use.genes.m,], cluster_rows=TRUE, cluster_cols=FALSE, scale="none", annotation_col=NULL,
main="Diff exp genes in muscle, log fc", fontsize_row=5, color = myColor, breaks = seq(from=-1*max.fc, to=max.fc, length.out=paletteLength))
```
```{r heatmap_circadian, fig.width=3, fig.height=8, fig.align='center'}
## Plot core circadian genes
core.circadian.genes <- c("TEF", "CRY2", "HLF", "BHLHE41", "CRY1", "RORB", "CLOCK", "PER2", "PER1", "NFIL3", "DBP", "NR1D2", "NR1D1", "NPAS2", "RORC", "PER3", "RORA", "BHLHE40", "ARNTL")
names(core.circadian.genes) <- c("ENSG00000167074", "ENSG00000121671", "ENSG00000108924", "ENSG00000123095", "ENSG00000008405", "ENSG00000198963", "ENSG00000134852", "ENSG00000132326", "ENSG00000179094", "ENSG00000165030", "ENSG00000105516", "ENSG00000174738", "ENSG00000126368", "ENSG00000170485", "ENSG00000143365", "ENSG00000049246", "ENSG00000069667", "ENSG00000134107", "ENSG00000133794")
core.circ.exp <- cbind(adipose_sms=apply(plot.data.a[core.circadian.genes,1:15],1,mean),
adipose_smw=apply(plot.data.a[core.circadian.genes,16:30],1,mean),
muscle_sms=apply(plot.data.m[core.circadian.genes,1:15],1,mean),
muscle_smw=apply(plot.data.m[core.circadian.genes,16:30],1,mean))
pheatmap(core.circ.exp, cluster_rows=TRUE, cluster_cols=FALSE, scale="none",
annotation_col=NULL, main="Core circadian genes", fontsize_row=5)
core.circ.diff.exp.a <- do.call("cbind", lapply(seq(from=1, to=30, by=2), function(i){ logcpm.a[core.circadian.genes,i+1] - logcpm.a[core.circadian.genes,i] }))
core.circ.diff.exp.m <- do.call("cbind", lapply(seq(from=1, to=30, by=2), function(i){ logcpm.m[core.circadian.genes,i+1] - logcpm.m[core.circadian.genes,i] }))
core.circ.diff.exp <- cbind(adipose=apply(core.circ.diff.exp.a,1,mean),
muscle=apply(core.circ.diff.exp.m,1,mean))
core.circ.diff.exp <- core.circ.diff.exp[order(apply(core.circ.diff.exp,1,mean)),] ## Order on average fc
paletteLength <- 50
myColor <- colorRampPalette(c("red", "white", "blue"))(paletteLength)
max.fc <- ceiling(max(abs(core.circ.diff.exp)))
pheatmap(core.circ.diff.exp, cluster_rows=FALSE, cluster_cols=FALSE, scale="none",
annotation_col=NULL, main="Core circadian, log fc", fontsize_row=5,
color = myColor,
breaks = seq(from=-1*max.fc, to=max.fc, length.out=paletteLength))
```
# Pathway analysis
Here we combine the information from individual genes, to see if any groups of genes (representing pathways, complexes, biological finctions etc.) show differential expression. We try two different approaches:
## Enrichr
Enrichr ia a web tool where you can upload lists of genes, and look for overlaps with gene sets from many different sources (Gene Ontology, KEGG, Wikipathays, ENCODE, GTEx). The tool can be found at http://amp.pharm.mssm.edu/Enrichr/. The following code generates gene lists that can be pasted into the web form.
```{r enrichr}
a.up.genes <- edger.a$gene_names[edger.a$FDR < 0.05 & edger.a$logFC > 0]
a.down.genes <- edger.a$gene_names[edger.a$FDR < 0.05 & edger.a$logFC < 0]
m.up.genes <- edger.m$gene_names[edger.m$FDR < 0.05 & edger.m$logFC > 0]
m.down.genes <- edger.m$gene_names[edger.m$FDR < 0.05 & edger.m$logFC < 0]
write.table(a.up.genes, row.names = F, col.names = F, quote = F) ## up DE genes from adipose
write.table(a.down.genes, row.names = F, col.names = F, quote = F) ## down DE genes from adipose
write.table(union(a.down.genes, a.up.genes), row.names = F, col.names = F, quote = F) ## all DE genes from adipose
write.table(m.up.genes, row.names = F, col.names = F, quote = F) ## up DE genes from muscle
write.table(m.down.genes, row.names = F, col.names = F, quote = F) ## down DE genes from muscle
write.table(union(m.down.genes, m.up.genes), row.names = F, col.names = F, quote = F) ## all DE genes from muscle
```
Uploading the lists to Enrichr gave the following results:
- Adipose down http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=1ajz2
- Adipose up http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=1ajyy
- Adipose all http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=3hpvs
- Muscle down http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=1ajyk
- Muscle up http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=1ajyb
- Muscle all http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=3hpvw
## GAGE
GAGE is an R package that does GSEA (gene set enrichment analysis).
First, load pre-processed Gene Ontology and KEGG gene annotations:
```{r gage_data, results='hide', message=FALSE, warning=FALSE}
data(kegg.sets.hs)
data(sigmet.idx.hs)
kegg.sigmet.hs=kegg.sets.hs[sigmet.idx.hs] # only use KEGG pathways related to signalling and metabolism
data(go.sets.hs)
data(go.subs.hs)
go.mf.hs=go.sets.hs[go.subs.hs$MF]
go.bp.hs=go.sets.hs[go.subs.hs$BP]
go.cc.hs=go.sets.hs[go.subs.hs$CC]
```
Then look for differentially regulated pathways, using the log fold change.
```{r gage_analysis_logfc}
## Adipose
kegg.gsea.fc.adipose <- run.gage(top.tab=edger.a, gene.sets=kegg.sigmet.hs, measure="logFC")
go.bp.gsea.fc.adipose <- run.gage(top.tab=edger.a, gene.sets=go.bp.hs, measure="logFC")
go.mf.gsea.fc.adipose <- run.gage(top.tab=edger.a, gene.sets=go.mf.hs, measure="logFC")
go.cc.gsea.fc.adipose <- run.gage(top.tab=edger.a, gene.sets=go.cc.hs, measure="logFC")
## Muscle
kegg.gsea.fc.muscle <- run.gage(top.tab=edger.m, gene.sets=kegg.sigmet.hs, measure="logFC")
go.bp.gsea.fc.muscle <- run.gage(top.tab=edger.m, gene.sets=go.bp.hs, measure="logFC")
go.mf.gsea.fc.muscle <- run.gage(top.tab=edger.m, gene.sets=go.mf.hs, measure="logFC")
go.cc.gsea.fc.muscle <- run.gage(top.tab=edger.m, gene.sets=go.cc.hs, measure="logFC")
```
# Session info
```{r session_info}
R.Version()
sessionInfo(package = NULL)
```