ORT in a CMake / C++ environment
ORT Community Days 2024

Ummo Schwarting

Carl Zeiss GOM Metrology GmbH
Frank Viernau

EPAM Systems GmbH

The Project
Why creating a SBOM is a challenge

The Project environment
* Metrology 3D Software
» Legacy monolithic CMake / C++ project with ~25 years development, ~ 10.000.000 lines of code
* Multiple teams committing, up to 90 pull requests a day

* SVN background: Migrated to git recently but still one repository without any submodules

* Many custom solutions to configure the build process
* No single build step but several layers

« 3" party package included at many different steps

* Firmware builds attached

* On site build environment

Further Challenge

* No changing a running system:
setting up everything new and clean is no option.

ZEISS 7 March 2024 3

Screening a monolithic legacy project

massively
simplified
representation

Source code repository 3

Project code

4‘**\
=l

(%]
(]
O
ud
>
@]
(%]
>
s
-
@©
o
e
st
m

3rd party sources
3rd party binary
3rd party sources
3rd party binary

3rd party binary

Options for Software composition analysis (SCA): _ Analyzer "»' Scanner Evaluator Notifier
D 1 D D

* Scan the whole source repo? :
Downloader #- Advisor ' Reporter

—> Infinite work for curation (plus maintaining curations)
—> Binary artefacts might be missed
* Binary analysis on final artifact?

—> massively incomplete.

ZEISS 7 March 2024 4

What to do?

1. Clean up!

Migrate 39 party packages into a central collection

Sort between distributed and internal packages

2. Add SCA ‘abstraction layer’ to funnel custom build solution into ORT workflow

The existing build system “magic” remains in place, but abstraction allows further processing.

The target data structure for the abstraction must be simple

. - - - : P Knowledge
Avoid having to train the build system specialists for SBOM structure O 2bout FOSS

of the build compliance

system and SBOM

3. Prioritize: Focus on what is important and define increments structure

« Completeness over structure
* Package hierarchy is no priority = ORT won’'t know, how packages depend on each other.
* But every package will be listed

« Binary package analysis is currently out of scope

ZEISS 7 March 2024 5

Screening a monolithic legacy project

Source code repository

Project code

Y

Abstraction layer

Analyzer “»’ Scanner Evaluator Notifier

D D 1 D B

Y Downloader # Advisor ' Reporter

(%]
[}
O
—
>
o
(%]
=
=
|-
©
o
©
—
m

3rd party sources
3rd party binary
3rd party sources
3rd party binary
3rd party binary

ZEISS 7 March 2024 6

Motivation
CMAKE -> analyzer result

Requirements
» Enable ORT's package-by-package license scanning / clearance workflow (re-use work across projects)
* Use ORT to create SBOMs containing dedicated entries per dependency
* Future: Enable querying vulnerabilities for the dependencies via ORT's advisor(s)
Just need an analyzer result representing the CMAKE project, but where from?
* Implement CMAKE support as package manager in ORT? ..very hard, not timely, not feasible.
« Put information into project.spdx / package.spdx files and analyze them with ORT?
* CMAKE scripts have all information, they could generate SPDX documents, but
* SPDX document data model more complex than needed here
* Relying on external format implies limitations: Risk to supporting unforeseen future use cases
* ORT's SPDX analyzer is relatively hard to change: analyzer result and SPDX documents do not match 1:1
* ldea: Introduce a minimal file format dedicated to this use case

* Generate an analyzer result based on such file + ort configuration

ZEISS 7 March 2024

Screening a monolithic legacy project

Source code repository

Project code

Y

Abstraction layer

package-list.yml

T Rmalyzer. "’ Scanner " Evaluator Notifier
orT Helper D D X T 3 1D

Y Downloader # Advisor ' Reporter

(%]
[}
O
—
>
o
(%]
=
=
|-
©
o
©
—
m

3rd party sources
3rd party binary
3rd party sources
3rd party binary
3rd party binary

ZEISS 7 March 2024 8

Motivation
CMAKE -> package list YAML -> analyzer result

Minimum data needed:

« A flat list of packages, per package:
identifier
provenance (for scanning for detected licenses)

is_excluded, is_dynamically_linked (for policy rules / license clearance)
« Some data from ORT configuration which the analyzer adds: package curations, ...
Decision to allow choosing identifiers freely (including type)
» Allows creating analyzer results with arbitrary set of packages: useful for other use case such as license clearance.
» User becomes responsible for uniqueness of identifiers

Short Demo

Limitations:
* Not all package metadata can be set yet. Further fields to be added, e.g. PURLs
 Inject further configuration into analyzer result: resolutions, .ort.yml file

* Querying vulnerabilities only work if identifier type is known in ORT / if queries are constructed from PURLs

ZEISS 7 March 2024 9

Outlook
Ongoing and future goals

« Transmit package dependency tree into ORT
* Use additional metadata, e.g. package URL (PURL)
* Read completed SBOMs for binary packages into ORT pipeline (equivalent to "»" Scanner step)

* Vulnerability identification for C++ dependencies (packages without ecosystem ID)

ZEISS 7 March 2024 10

Discussion

Seeing beyond

	Default Section
	Slide 2: ORT in a CMake / C++ environment
	Slide 3: The Project
	Slide 4: Screening a monolithic legacy project
	Slide 5: What to do?
	Slide 6: Screening a monolithic legacy project
	Slide 7: Motivation
	Slide 8: Screening a monolithic legacy project
	Slide 9: Motivation
	Slide 10: Outlook
	Slide 11: Discussion
	Slide 12

