
Designing the Framework of a
Parallel Game Engine

How to Get the Most Out of a Multi‐Core CPU with Your Game Engine

Table of Contents

How to Get the Most Out of a Multi-Core CPU with Your Game Engine... 1
1. Introduction... 4
1.1. Overview .. 4
1.2. Assumptions .. 4
2. Parallel Execution State.. 5
2.1. Execution Modes .. 5

2.1.1. Free Step Mode ... 6
2.1.2. Lock Step Mode .. 6

2.2. Data Synchronization... 6
3. The Engine... 8
3.1. Framework ... 9

3.1.1. Scheduler .. 10
3.1.2. Universal Scene & Objects.. 10

3.2. The Managers .. 11
3.2.1. Task Manager .. 11
3.2.2. State Manager .. 12
3.2.3. Service Manager .. 13
3.2.4. Environment Manager ... 13
3.2.5. Platform Manager ...13

4. Interfaces .. 15
4.1. Subject and Observer Interfaces .. 15
4.2. Manager Interfaces ... 15
4.3. System Interfaces .. 15
4.4. Change Interfaces ... 16
5. Systems ... 17
5.1. Types... 17
5.2. System Components... 17

5.2.1. System... 17
5.2.2. Scene ... 18
5.2.3. Object ... 18
5.2.4. Task ... 18

6. Tying It All Together.. 19
6.1. Initialization Stage... 19
6.2. Scene Loading Stage ... 19
6.3. Game Loop Stage ... 20

6.3.1. Task Execution.. 20
6.3.2. Distribution.. 21
6.3.3. Runtime Check and Exit.. 21

7. Final Thoughts .. 22
8. About the Author ... 23
Appendix A. Example Engine Diagram ... 24
Appendix B. Engine and System Relationship Diagram.. 25
Appendix C. The Observer Design Pattern... 26
Appendix D. Tips on Implementing Tasks .. 27
List of Figures.. 28
Bibliography... 29

1. Introduction

With the advent of multiple cores within a processor the need to create a parallel game engine has
become more and more important. It is still possible to focus primarily on just the GPU and have a
single threaded game engine, but the advantage of utilizing all the processors on a system, whether
CPU or GPU, can give a much greater experience for the user. For example, by utilizing more CPU
cores a game could increase the number of rigid body physics object for greater effects on screen, or
developing smarter AI that gives it a more human like behavior.

1.1. Overview
The “Parallel Game Engine Framework” or engine is a multi-threaded game engine that is designed to
scale to as many processors as are available within a platform. It does this by executing different
functional blocks in parallel so that it can utilize all available processors. This is easier said than
done as there are many pieces to a game engine that often interact with one another and can cause
many threading errors because of that. The engine takes these scenarios into account and has
mechanisms for getting proper synchronization of data without having to be bound by
synchronization locks. The engine also has a method for executing data synchronization in parallel
in order to keep serial execution time at a minimum.

1.2. Assumptions
This paper assumes a good working knowledge of modern computer game development as well as
some experience with game engine threading or threading for performance in general.

2. Parallel Execution State

The concept of a parallel execution state in an engine is crucial to an efficient multi-threaded
runtime. In order for a game engine to truly run parallel, with as little synchronization overhead as
possible, it will need to have each system operate within its own execution state with as little
interaction as possible to anything else that is going on in the engine. Data still needs to be shared
however, but now instead of each system accessing a common data location to say, get position or
orientation data, each system has its own copy. This removes the data dependency that exists
between different parts of the engine. Notices of any changes made by a system to shared data are
sent to a state manager which then queues up all the changes, called messaging. Once the different
systems are done executing, they are notified of the state changes and update their internal data
structures, which is also part of messaging. Using this mechanism greatly reduces synchronization
overhead, allowing systems to act more independently.

2.1. Execution Modes
Execution state management works best when operations are synchronized to a clock, meaning the
different systems execute synchronously. The clock frequency may or may not be equivalent to a
frame time and it is not necessary for it to be so. The clock time does not even have to be fixed to a
specific frequency but could be tied to frame count, such that one clock step would be equal to how
long it takes to complete one frame regardless of length. Depending on how you would like to
implement your execution state will determine clock time. Figure 1 illustrates the different systems
operating in free step mode of execution, meaning they all don’t have to complete their execution on
the same clock. There is also a lock step mode of execution (see Figure 2) where all systems execution
and complete in one clock.

Data Synchronization

Clock n Clock n+1

Graphics

Physics Physics

AI

Other Other

State Manager

F
igure 1: Execution State using Free Step Mode

2.1.1. Free Step Mode
This mode of execution allows systems to operate in the time they need to complete their
calculations. Free can be misleading as a system is not free to complete whenever it wants to, but is
free to select the number of clocks it will need to execute.

With this method a simple notification of a state change to the state manager is not enough, data will
also need to be passed along with the state change notification. This is because a system that has
modified shared data may still be executing when a system that wants the data is ready to do an
update. This requires more memory and more copies to be used so may not be the most ideal mode
for all situations.

2.1.2. Lock Step Mode
This mode requires that all systems complete their execution in a single clock. This is simpler to
implement and does not require passing data with the notification because systems that are
interested in a change made by another system can simply query the other system for the value (at
the end of execution of course).

Data Synchronization

Lock step can also implement a pseudo free step mode of operation by staggering calculations
across multiple steps. One use of this is with an AI that will calculate its initial “large view” goal in
the first clock but instead of just repeating the goal calculation for the next clock it can now come
up with a more focused goal based on the initial goal.

2.2. Data Synchronization
It is possible for multiple systems to make changes to the same shared data. Because of this,
something needs to be put in place in the messaging to determine which value would be the correct
value to use. There are two such mechanisms that can be used:

Clock n Clock n+1

Graphics Graphics

Physics Physics

AI

Other Other

AI

State Manager

Figure 2: Execution State using Lock Step Mode

• Time, where the last system to make the change time-wise has the correct value.

• Priority, where a system with a higher priority will be the one that has the correct value.
This can also be combined with the time mechanism to resolve changes from systems of
equal priority.

Data values that are determined to be stale, via the two mechanisms, will simply be overwritten or
thrown out of the change notification queue.

Because the data is shared, using relative values for data can prove to be difficult as some data may
be order dependent when combining it. To alleviate this problem use absolute data values for those
that require it so that when systems update their local values they just replace the old with the new.
A combination of both absolute and relative data would be the most ideal and would depend on
each specific situation. For example, common data, like position and orientation, should be kept
absolute as creating a transformation matrix for it would depend on the order they are received, but
a custom system that generated particles, via the graphics system, that fully owned the particle
information could merely send relative value updates.

3. The Engine

The engine’s design is focused on flexibility, allowing for the simple expansion of its functionality.
With that said, it can be easily modified to accommodate platforms that are constrained by certain
factors, like memory, etc.

The engine is broken up into two distinct pieces called the framework and the managers. The
framework (section 3.1) contains the parts of the game that are duplicated, meaning there will be
multiple instances of them. It also contains items that have to do with execution of the main game
loop. The managers (section 3.2) are singletons that the game logic is dependent upon.

The following diagram illustrates the different sections that make up the engine:

EEnnggiinnee

Framework Managers

Task Scheduler Game Loop

State

UScene Service

Figure 3: Engine High-Level Architecture

Notice that the game processing functionality, referred to as a system, is treated as a separate entity
from the engine. This is for the purpose of modularity, essentially making the engine the “glue” for
tying in all the functionality together. Modularity also allows for the systems to loaded or unloaded
as needed.

The interfaces are the means of communication between the engine and the systems. Systems
implement the interface so that the engine can get access to a system’s functionality, and the engine
implements the interface so that the systems can access the managers.

To get a clearer picture of this concept refer to Appendix A, “Example Engine Diagram”.

As described in section 2, “Parallel Execution State”, the systems are inherently discrete. By doing
this, systems can run in parallel without interfering with the execution of other systems. This does
cause some problems when systems need to communicate with each other as data is not guaranteed
to be in a stable state. Two reasons for inter system communication are:

Environment
… UObject UObject

Platform

SSyysstteemm SSyysstteemm SSyysstteemm

Interfaces

• To inform another system of a change it has made to shared data (e.g. position, or
orientation),

• To request for some functionality that is not available within the system (e.g. the AI system
asking the geometry/physics system to perform a ray intersection test).

The first communication problem is solved by implementing the state manager described in the
previous section. The state manager is discussed in more detail in section 3.2.2, “State Manager”.

To rectify the second problem, a mechanism is included for a system to provide a service that a
different system can use. For a more detailed description, you can reference section 3.2.3, “Service
Manager”.

3.1. Framework
The framework is responsible for tying in all the different pieces of the engine together. Engine
initialization occurs within the framework, with the exception of the managers which are globally
instantiated. The information about the scene is also stored in the framework. For the purpose of
flexibility the scene is implemented as what is called a universal scene which contains universal objects
which are merely containers for tying together the different functional parts of a scene. More
information on this is available in section 3.1.2.

The game loop is also located within the framework and has the following flow:

Process Window Messages

Figure 4: Main Game Loop

The first step in the game loop is to process all pending OS window messages as the engine operates
in a windowed environment. The engine would be unresponsive to the OS if this was not done.
The next step is for the scheduler to issue the systems’ tasks with the task manager. This is
discussed in more detail in section 3.1.1 below. Next, the changes that the state manager (section
3.2.2) has been keeping track of are distributed to all interested parties. Finally, the framework
checks the execution status to see if the engine should quit, or perform some other engine execution
action like go to the next scene. The engine execution status is located in the environment manager
which is discussed in section 3.2.4.

Scheduler Execution

Distribute Changes

1. Determine Systems to
Execute

2. Send to Task Manager

Check Execution Status

3. Wait for Completion

3.1.1. Scheduler
The scheduler holds the master clock for execution which is set at a pre-determined frequency. The
clock can also run at an unlimited rate, for things like benchmarking mode, so that there is no
waiting for the clock time to expire before proceeding.

The scheduler submits systems for execution, via the task manager, on a clock tick. For free step
mode (section 2.1.1), the scheduler communicates with the systems to determine how many clock
ticks they will need to complete their execution and from there determines which systems are ready
for execution and which systems will be done by a certain clock tick. This amount can be adjusted
by the scheduler if it determines that a system needs more execution time. Lock step mode (section
2.1.2) has all systems start and end on the same clock, so the scheduler will wait for all systems to
complete execution.

3.1.2. Universal Scene & Objects
The universal scene and objects are containers for the functionality that is implemented within the
systems. By themselves, the universal scene and objects do not possess any functionality other than
the ability to interact with the engine. They can, however, be extended to include the functionality
that is available in a system. This gives them the ability to take on the properties of any available
system without having to be tied to a specific system giving it loose coupling. Loose coupling is
important as it allows the systems to be independent of each other giving them the ability to run in
parallel.

The following diagram illustrates the universal scene and object extension of a system:

Figure 5: Universal Scene and Object Extension

An example of how extensions work is as follows: A universal scene is extended to have graphics,
physics, and other properties. The graphics scene extension would be responsible for initializing the
display and other things, and the physics scene extension would be responsible for setting up the
rigid body world, like gravity, etc. Scenes contain objects, so a universal scene would have several
universal objects. A universal scene can also be extended to have graphics, physics, and other
properties. The graphics object extension would be responsible for drawing the object on screen,
and the physics object extension would be responsible for the rigid body interaction of the object
with other rigid bodies.

For a more detailed diagram on the relationship of the engine with the systems see Appendix B,
“Engine and System Relationship Diagram”.

System

Scene

Object

System

Scene

Object

UScene UObject

Another thing to point out is that the universal scene and universal object are responsible for
registering all their extensions with the state manager so that the extensions will get notified of
changes made by other extensions (i.e. other systems). An example would be the graphics extension
being registered to receive notification of position and orientation changes made by the physics
extension.

More information about the system’s components can be found in section 5.2, “System
Components”.

3.2. The Managers
The managers provide global functionality within the engine and are implemented as singletons,
meaning there will only be one instantiation made available for each type of manager. The reason
they are singletons is because their resources should not be duplicated as they will cause redundancy
and potential processing performance implications. They also provide common functionality that
will be useable across all the systems.

3.2.1. Task Manager
The task manager handles scheduling of a system’s task within its thread pool. The thread pool
creates one thread per processor to get the best possible n-way scaling to processors and prevents
over subscription avoiding unnecessary task switching within the OS.

The task manager receives its list of tasks to execute from the scheduler as well as which tasks to
wait for execution to complete. The scheduler gets its list of tasks to execute from the different
systems themselves. There will only be one primary task per system, this is commonly known as
functional decomposition, but each primary task is allowed to issue as many sub-tasks as it wants to for
operating on its data, which is called data decomposition.

The following demonstrates how the task manager could issue tasks onto threads for execution on a
quad core system:

Figure 6: Task Manager Thread Pool Example

Thread 1 Graphics

Thread 2

Thread 3 Physics

Physics

AI

AI AI

Physics

Physics

Audio

AI

Thread 4

…

…

…

…

Aside from access by the scheduler for issuing of primary tasks, the task manager also has an
initialization mode where it will call systems serially from each thread so that the systems can
initialize any thread local storage they require for execution.

For some help getting started on implementing a task manager, refer to Appendix D, “Tips on
Implementing Tasks”.

3.2.2. State Manager
State management is part of the messaging mechanism that tracks and distributes change
notifications made by a system to other interested systems. To reduce unnecessary change
notification broadcasts, systems must register with the state manager for changes they are interested
in receiving. This mechanism is based on the observer design pattern which is described in more
detail in Appendix C, “The Observer Design Pattern”. In a nutshell, the observer design pattern has
the basic premise of an observer observing a subject for any changes, with a change controller acts as a
mediator between the two.

This mechanism works as such: 1) The observer registers the subject it wants to observe with the
change controller (or state manager), 2) when the subject has changed one of its properties it sends a
change notification to the change controller, 3) the change controller, when told to by the
framework, will distribute the change notifications of the subject to the observer, and 4) the
observer will query the subject for the actual changed data.

Free step mode of operation (section 2.1.1) introduces some extra complexities to this mechanism.
Firstly, it will be necessary to include the data along with the change notification as a system that has
modified shared data may still be executing and therefore cannot be queried for its value. Next, if a
system is not yet ready to receive the changes at the end of a clock tick, the state manager will need
to hold on to that data until all systems registered for it are finally ready to receive it.

The framework implements two state managers, one for handling changes on the scene level and
another for handling changes on the object level. The reason for this is that scenes and objects, for
the most part, have different messages that are relevant to them so separating them removes the
need to process unnecessary messages. However, any object changes that are relevant to the scene
will be registered with the scene so that it will receive those change notifications.

In order to remove any synchronization overhead, the state manager will have a change queue for
each thread created by the task manager. This way there is no synchronization required when
accessing the queue. The queues can then be merged after execution using the method described in
section 2.2.

While you would think that change
notifications would have to be distributed
serially, it is possible to parallelize this action.
When systems are executing their tasks they
operate across all their objects. For example,
the physics system would be moving around
objects, checking for collisions, and setting
new forces, etc. as physics object interact
with each other. During change notification
a system’s object is no longer interacting
with other objects from its own system but

Change
Distribution
Task

UObject

Extensions

Figure 7: Internal UObject Change Notification

is now interacting with other extensions in the universal object it is associated with. This means that
universal objects are now independent of each other so each universal object can be updated in
parallel. Take note, though, that there may be some corner cases that need to be accounted for with
synchronization. Still, something that looked hopelessly serial can now get some parallelization.

3.2.3. Service Manager
The service manager provides access to functionality to systems that otherwise would not have such
functionality. A thing to note is that the service manager does not provide this directly but has the
interfaces defined for it and any
systems that implement the
exposed interface functionality
will register themselves with the
service manager.

Service Manager

There is only a small set of
services available as the design of
the engine is to keep systems
running as discretely as possible. Also, systems are not free to provide any service they so choose
but only those provided for by the service manager.

Use ServiceRegister
Service
Provider

Physics System AI System

Figure 8: Service Manager Example

The service manager has another role of providing access to the properties of the different systems
to each other. Properties are values of each system that are specific to a system and are therefore
not passed in the messaging system. Some examples of these are the screen resolution of the
graphics system, or the gravity value of the physics system. The service manager gives access to all
these properties to the different systems without giving them direct control over them. It also
makes it so that the property changes are queued up and are only issued during serial execution.
Take note that accessing another system’s properties is a rare occurrence and should not be used as
common practice. This is made available for things like the console window, for example, to turn
on/off wireframe mode in the graphics system, or for the user interface system to change the screen
resolution as requested by the user. They are essentially used for things that will not change from
frame to frame.

3.2.4. Environment Manager
The environment manager provides the functionality for the engine’s running environment. The
following is a list of the function groups provided by the environment manager:

• Variables – variable names and data that are shared across the entire engine. The variables
are usually set upon loading a scene or some user settings, and are queried in the engine and
or by the different systems.

• Execution – information about the execution, such as the end of a scene or end of the
program. This can be set or queried for by either the engine or the systems.

3.2.5. Platform Manager
The platform manager handles all abstraction of OS calls and also provides added functionality
beyond just a simple abstraction. This gives the benefit of encapsulating several common functional
steps within one call instead of all the callers having to implement them or know about the nuances
of the OS calls.

An example of this is the call in the platform manager to load a system’s dynamic library. Aside
from loading a system in, it also gets the function entry points and then calls the library’s
initialization function. It will also keep around a handle to the library and then unloads it upon exit
of the engine.

The platform manager is also responsible for providing information about the processor, such as
which SIMD instructions are supported and some others, and initializing some of the behavior for
the process. This is a query only functionality that systems can use.

4. Interfaces

The interfaces are the means of communication between the framework, the managers, and the
systems. The framework and the managers reside within the engine and therefore the framework
has direct access to the managers. The systems, however, reside outside of the engine and have
different functionality from each other making it necessary to have a common method for accessing
them. Also, the systems do not have direct access to the managers so they also need a method for
accessing the managers but not necessarily the full functionality as certain items should only be
accessible to the framework.

The interfaces provide a set functionality that needs to be implemented in order to have a common
method of access. This makes it unnecessary for the framework to know the details about a specific
system as it can communicate to it through a known set of calls.

4.1. Subject and Observer Interfaces
The subject and observer interfaces are used for the registration of the observer with the subject and
for passing of change notifications from the subject to the observer. A default subject
implementation is also provided as the functionality to handle observer registration/de-registration
is common to all subjects.

4.2. Manager Interfaces
The managers, even though they are singletons, are only directly available to the framework which
means that the different systems do not have access to them. In order to provide access, each
manager would have an interface that exposes a subset of its functionality. The interface would then
be passed to the system when it gets initialized and the systems would then have access to a subset
of the manager.

The interface defined is dependent upon the manager and therefore is not a common interface but
specific to that manager.

4.3. System Interfaces
The systems need to implement interfaces in order for the framework to get access to its
components. Without it the framework would have to implement a specific implementation of each
new system that gets added to the engine.

There are four components to a system so there are four interfaces a system must implement. They
are: System, Scene, Object, and Task. These different components are covered in section 5,
“Systems”. The interfaces are the means of getting these components. The System interface
provides methods for creating and destroying scenes. Scene interfaces provide methods for creating
and destroying objects and a method for retrieving the primary task. The Task interface is used by
the task manager when issuing tasks within its thread pool.

The scene and object interfaces also derive from the subject and observer interfaces as these are the
pieces of the system that need to communicate with one another, and with the universal scene and
object they are attached to.

4.4. Change Interfaces
There are also some special interfaces that are used for passing data between the systems. Any
systems that make these specific modifications must also implement the interface. An example of
this kind of interface is geometry. The geometry interface would have methods for retrieving the
position, orientation, and scale for a certain item. Any systems that make modifications to geometry
would need to implement this interface so that a different system would be able to access the
geometry changes without needing to know about the other system.

5. Systems

The systems are what provide the game functionality to the engine. Without them the engine would
just spin endlessly without any tasks to perform. In order to keep the engine from having to know
about all the different system types, systems must implement the interfaces described in section 4.3,
“System Interfaces”. This makes it much simpler to add a new system to the engine since the engine
won’t need to know about the details.

5.1. Types
The engine should have some predefined systems types that go along with them for standard game
components. Some examples are as follows: Geometry, Graphics, Physics (rigid body collision),
Audio, Input, AI, and Animation.

A custom type is also recommended for systems that implement functionality outside of the
common functional blocks in a game. Take note that any systems that modify the custom type’s
specific data items will need to know about the custom type’s interface as the engine does not
provide this information.

5.2. System Components
A system has several components to it that need to be implemented. They are as follows: System,
Scene, Object, and Task. These components are all used to communicate with the different sections
within the engine.

The following diagram demonstrates the relationship between the components:

Figure 9: System Components

For a more detailed diagram on the relationship of the systems with the engine, refer to Appendix A,
“Engine and System Relationship Diagram”.

5.2.1. System
The system component, or system, is responsible for initializing system resources that will remain
more or less constant throughout the execution of the engine. An example of this is the graphics
system analyzing all the passed in resource locations to determine where they are located for quicker
loading upon use of the resource. The screen resolution would also be another item set by the
graphics system.

Object Object Object

System

Scene Task

The system is also the main entry point for the framework and provides information about itself,
such as its type, and provides methods for creation and destruction of scenes.

5.2.2. Scene
The scene component, otherwise known as a system scene, is responsible for handling resources that
are pertinent to the existing scene. The universal scene uses this scene as an extension of its
functionality to make available the properties this system scene provides. An example of this
component is the physics scene creating a new world and setting the gravity for the world upon
scene initialization.

The scene also provides methods for creation and destruction of objects. It also owns the task
component, which is used to operate on the scene, and provide a method for retrieving it.

5.2.3. Object
The object component, alternatively a. system object, is an object within the scene and is typically
associated with what is visible to the user on screen. The universal object uses this object
component as an extension of its functionality to allow the properties this object provides to be
exposed via the universal object.

An example of how this could be used is a universal object extending geometry, graphics, and
physics to create a beam of wood on screen. The geometry would hold the position, orientation,
and scale information of the object, the graphics system would display it on screen using the given
mesh, and the physics system would apply rigid body collision to it so that it would interact with
other rigid body objects and gravity.

In certain situations a system object may be interested in the changes of a different universal object,
or one of its extensions. In this case a link can be established so that the system object can observe
the other object.

5.2.4. Task
The task component, referred to as a system task, is responsible for operating on the scene. When the
task receives a command to update, from the task manager, it will perform the system’s functionality
on the objects within the scene.

The task can also choose to subdivide its execution into subtasks and schedule the subtasks with the
task manager for even more threaded execution. Doing this allows the engine to scale more readily
to a configuration with multiple processors. This technique is known as data decomposition.

During the task’s update of the scene is when any modifications done to its objects are posted to the
state manager. Refer to section 3.2.2 for more information about the state manager.

6. Tying It All Together

This is a lot of information to absorb all at once, and the different sections aren’t really separate
from one another. The entire engine execution can be broken up into several stages as described in
the following sections.

6.1. Initialization Stage
Engine execution begins by initializing the
managers and the framework.

System
Interface

Manager
Interfaces

System Module

Loader

Platform Manager

Call

Return

Framework Managers

• The framework calls the scene loader to
load in the scene.

• The loader determines what systems the
scene is using then calls the platform
manager to load those modules.

• The platform manager loads the modules,
passes in the manager interfaces, then
calls into them to create a new system.

• The module returns a pointer to the
instantiated system which implements the system interface.

Figure 10: Engine Manager and System Initialization

• The system module will also register any services it provides with the service manager.

6.2. Scene Loading Stage
Control returns to the loader which loads the scene.

• The loader creates a universal scene and calls each system interface to instantiate system scenes,
extending the functionality of the universal scene.

• The universal scene checks
each system scene for what
shared data changes they
could possibly make and
what shared data changes
they would like to receive.

• The universal scene then
registers the matching system
scenes with the state manager
so that they will be notified
of the changes.

• The loader creates a universal
object for each object in the
scene and determines which
systems will be extending the universal object. The universal object follows a similar system object
registration pattern with the state manager as that of the universal scene.

Graphics System

Physics System

State Manager

AI System

Loader UScene

Graphics Scene

Physics Scene

AI Scene

Figure 11: Universal Scene and Object Initialization

• The loader instantiates system objects via the system scene interfaces it previously received and
extends the universal objects with the system objects.

• The scheduler then queries the system scene interfaces for their primary tasks because the
scheduler is responsible for issuing the primary tasks to the task manager during execution.

6.3. Game Loop Stage
The main game loop begins processing (see Figure 4, “Main Game Loop” for a graphical
representation of this).

• The platform manager is called to process all window messages and/or other platform specific
items that are needed for operation on the current platform.

• Execution is then transferred to the scheduler, which waits for the clock time to expire before
proceeding.

• The scheduler, for free step mode, checks which of the system tasks completed execution in the
previous clock. All tasks that are done (i.e. ready to execute) get issued to the task manager.

• The scheduler will now determine which tasks will complete on the current clock and waits for
completion of those tasks.

• For lock step mode, the scheduler issues all tasks and waits for them to complete for each clock
step.

6.3.1. Task Execution
Execution is transferred to the task manager. Task Queue

• The task manager queues up all tasks submitted to it
and starts processing each task as threads become
available. (Task processing is specific to each system.
Systems can operate using only one task or they can
issue more tasks which get queued in the task manager,
thus potentially getting executed in parallel).

• As tasks execute they will operate on the entire scene or
on specific objects and modify their internal data
structures.

• Any data that is considered as shared, like position and
orientation, needs to get propagated to the other
systems. The system task does this by having the
system scene or system object (whichever was changed)
inform their observer of the change. In this case the
observer is actually the change controller located in the
state manager.

• The change controller queues up the change
information to be processed later, but change types that
the observer is not interested in are simply ignored.

Task Manager

Service Provider

Service Manager

State Manager

Environment Manager

Thread Pool

Ex
ec
ut
in
g
Ta
sk

Figure 12: Task Manager and Tasks

• If the task needs any services it goes through the service manager to call into the provided service.
The service manager can also be used to change the property of a different system that isn’t
exposed via the messaging mechanism (e.g. the user input system changes the screen resolution of
the graphics system).

• Tasks can also call into the environment manager to read environment variables, change the
runtime state (e.g. pause execution, go to next scene, etc.).

6.3.2. Distribution
Once all tasks targeted for the current clock have completed execution, the main loop calls the state
manager to distribute the changes.

• The state manager calls each of its change controllers to distribute the changes they have queued
up. This is done by going through each subject’s changes and seeing which observer was listening
to that subject.

• The change controller then calls the observer informing it of the change (a pointer to the subject’s
interface is also passed to the observer). For free step mode, the observer gets the changed data
from the change controller, but for lock step mode the observer queries the subject for the data.

• The observers that are interested in the changes done by a system object will typically be other
system objects that are all attached to the same universal object. This makes it possible for the
change distribution to be broken up into tasks for execution in parallel. To limit synchronization,
group together in a task any universal objects’ extensions that are linked.

6.3.3. Runtime Check and Exit
The final step of the main loop is to check the runtime’s state. There are several runtime states like:
run, pause, next scene, etc. If the runtime state is set to run it will repeat the entire game loop. If
the runtime is set to exit then it exits the game loop, frees up resources, and exits the application.
Other runtime states can be implemented like pause, go to next scene, etc.

7. Final Thoughts

The key takeaway from all of this is section 2, “Parallel Execution State”. Designing systems for
functional decomposition, coupled with data decomposition will deliver a good amount of
parallelization and will also ensure scalability with future processors with an even larger amount of
cores. Remember to use the state manager along with the messaging mechanism to keep all data in
sync with only minimal synchronization overhead.

The observer design pattern is a function of the messaging mechanism and some time should be
spent learning it so that the most efficient design possible can be implemented to address the needs
of your engine. After all, it is the mechanism of communication between the different systems to
synchronize all shared data.

Tasking plays an important role in proper load balancing. Following the tips in Appendix D will
help you create an efficient task manager for your engine.

As you can see, designing a highly parallel engine is manageable by using clearly defined messaging
and structure. Properly building parallelism into your game engine will give it significant
performance gains on modern and all future processors.

8. About the Author

Jeff Andrews is an Application Engineer with Intel working on optimizing code for software
developers, currently focused on PC gaming. He also researches different technologies for
enhancing performance or for adding new features to games, which included a role of lead architect
for Intel’s Smoke demo framework.

Appendix A. Example Engine Diagram

EEnnggiinnee

GGrraapphhiiccss

Scene Manager

Direct 3D 9

SSyysstteemmss

PPhhyyssiiccss

Havok

Character Proxy

UUsseerr IInnppuutt

Direct Input

Keyboard/Mouse

AAII

Scene Manager

Direct 3D 9

FFrraammeewwoorrkk MMaannaaggeerrss

AAuuddiioo

Scene Manager

Direct 3D 9

Scheduler UScene UObject Task State …

Interfaces

Appendix B. Engine and System Relationship
Diagram

Physics System Library

Engine Geometry System Library

Graphics System Library

S
y
ste

m

F
ra

m
e
w

o
rk

S
ce

n
e

S
y
ste

m

S
y
ste

m

T
a
sk

S

ce
n

e

T
a
sk

S

ce
n

e

T
a
sk

S
ch

e
d

u
le

r

U

n
iv

e
rs

a
l
S

ce
n

e

Task
Manager

Appendix C. The Observer Design Pattern

The observer design pattern is documented in the book “Design Patterns: Elements of Reusable
Object-Oriented Software,” written by Erich Gamma et al., and originally published by Addison-
Wesley in 1995.

The basic premise of this pattern is that any items interested in data or state changes in other items
are not burdened with having to poll the items from time to time to see if there are any changes.
The pattern defines a subject and an observer that are used for the change notification. It works by
having an observer observe a subject for any changes. The change controller acts as a mediator between
the two. The following diagram illustrates the relationship:

The following is the flow of events

1. The observer registers itself
change controller.

2. The change controller is ac
subject it registers itself wit
registered with which subje

3. The subject inserts the obse
are interested in it; optional
changes the observer is inte
distribution process.

4. When the subject makes a c
mechanism and passes info

5. The change controller queu
distribute them.

6. During distribution the cha

7. The observers query the su
message).

8. When the observer is no lo
itself from the subject via th

Subject Observer

Change Controller 55

88 44 11

22

66 33

77

F n
igure 13: Observer Design Patter

:

 with the subject that it wants to observe changes for via the

tually an observer. Instead of registering the observer with the
h the subject and keeps its own list of which observers are
ct.

rver (actually the change controller) in its list of observers that
ly there can also be a change type which identifies what type of
rested in – this helps speed up the change notification

hange to its data or state it notifies the observer via a callback
rmation of the types that were changed.

es up the change notifications and waits for the signal to

nge controller calls the actual observers.

bject for the changed data or state (or get the data from the

nger interested in the subject or is being destroyed, it deregisters
e change controller.

Appendix D. Tips on Implementing Tasks

While task distribution can be implemented in many different ways, it is best to keep the number of
worker threads equal to the number of available logical processors of the platform. Avoid setting
the affinity of tasks to a specific thread as the tasks from the different systems will not complete at
the same time and can lead to a load imbalance among the worker threads, effectively reducing your
parallelization. It will also be worth your while to investigate using a tasking library, like Intel’s
Threading Building Blocks for example, which can simplify this process.

There are some optimizations that can be done in the task manager to ensure CPU friendly
execution of the different task submitted. They are as follows:

• Reverse Issuing, if the order of primary tasks being issued is fairly static, the tasks can then
be alternately issued in reverse order from frame to frame. The last task to execute in a
previous frame will more than likely still have its data in the cache, so by issuing the tasks in
reverse order for the next frame it will all but guarantee that the CPU caches will not have to
be repopulated with the correct data.

• Cache Sharing, some multi-core processors have their shared cache split into sections so
that two processors may share a cache, while another two share a separate cache. By issuing
sub-tasks from the same system onto processors sharing a cache it will increase the
likelihood that the data will already be in the shared cache.

List of Figures

Figure 1: Execution State using Free Step Mode ..1
Figure 2: Execution State using Lock Step Mode ...1
Figure 3: Engine High-Level Architecture ...8
Figure 4: Main Game Loop..9
Figure 5: Universal Scene and Object Extension..10
Figure 6: Task Manager Thread Pool Example...11
Figure 7: Internal UObject Change Notification ..1
Figure 8: Service Manager Example..1
Figure 9: System Components ...17
Figure 10: Engine Manager and System Initialization ..1
Figure 11: Universal Scene and Object Initialization..1
Figure 12: Task Manager and Tasks..1
Figure 13: Observer Design Pattern ...1

Bibliography

Gamma, E., Helm, R., Johnson, R., Vlissides, J., (1995-2000). Design Patterns: Elements of Reusable
Object-Oriented Software. USA: Addison-Wesley.

Intel® Threading Building Blocks (TBB) Home Page. Available from:
<http://www.threadindbuildingblocks.org>

