-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhfamp400.cpp
757 lines (584 loc) · 19.2 KB
/
hfamp400.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
/*
* hfamp400.cpp - HFamp400 library for Arduino
* Copyright (c) 2015 Otelo eGen - Georg Ottinger (georg.ottinger@oteloegen.at)
* All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Wire.h>
#include "hfamp400.h"
//#define DEBUG
//#define DEBUG_CURRENT
void HFAMP400::init ()
{
analogReadResolution(12); //Set ADC Resulotion of Arduino Due to 12 Bit
Wire.begin();
ad7294.init();
ad7415.init();
hfpowercal.init();
//Read current offset from EEPROM
hfpowercal.eeprom.read_buffer(EE_VOLTAGE_CALIBRATION,(byte*)&voltage_factor, sizeof(voltage_factor));
hfpowercal.eeprom.read_buffer(EE_CURRENT_CALIBRATION,(byte*)¤t_factor, sizeof(current_factor));
analogRead(A0); //Dummy ADC reads to avoid uninitialized ADCs
analogRead(A1);
analogRead(A2);
analogRead(A3);
analogRead(A4);
analogRead(A5);
set_working_frequency(100e6);
pinMode(FUSE_CH_1_AC_CHARGE_PIN, OUTPUT); pinMode(FUSE_CH_1_CLOCK_PIN,OUTPUT); //Fuse Reset Pins
pinMode(FUSE_CH_2_AC_CHARGE_PIN, OUTPUT); pinMode(FUSE_CH_2_CLOCK_PIN,OUTPUT); //Fuse Reset Pins
}
HFAMP400_Status HFAMP400::reset_fuse(FUSE_CHANNEL channel)
{
if (!checkboundaries((int)channel, (int)(FUSE_CHANNEL)FUSE_CH_1, (int)(FUSE_CHANNEL)FUSE_CH_3))
return ERROR_CHANNEL;
switch(channel)
{
case FUSE_CH_1:
reset_fuse_pins(FUSE_CH_1_AC_CHARGE_PIN,FUSE_CH_1_CLOCK_PIN);
break;
case FUSE_CH_2:
case FUSE_CH_3:
reset_fuse_pins(FUSE_CH_2_AC_CHARGE_PIN,FUSE_CH_2_CLOCK_PIN);
break;
}
return OK;
}
void HFAMP400::reset_fuse_pins(int pin_ac, int pin_clock)
{
int i;
digitalWrite(pin_clock,LOW);
for( i = 0; i < HFAMP400_FUSE_RESET_CHARGETIME; i++)
{
digitalWrite(pin_ac, HIGH);
delayMicroseconds(500);
digitalWrite(pin_ac, LOW);
delayMicroseconds(500);
}
digitalWrite(pin_clock,HIGH);
delayMicroseconds(100);
digitalWrite(pin_clock,LOW);
}
void HFAMP400::reset_gatebiasing(void)
{
ad7294.writereg_u16(dac_a_value, 0x0);
ad7294.writereg_u16(dac_b_value, 0x0);
ad7294.writereg_u16(dac_c_value, 0x0);
ad7294.writereg_u16(dac_d_value, 0x0);
}
HFAMP400_Status HFAMP400::set_gatebias(GATEBIAS_CHANNEL channel, float volt)
{
uint16_t value;
if (!checkboundaries((int)channel, (int)(GATEBIAS_CHANNEL)GATEBIAS_CH_VOUT_A, (int)(GATEBIAS_CHANNEL)GATEBIAS_CH_VOUT_D))
return ERROR_CHANNEL;
if (!checkboundaries(volt, (float)0.0, (float)5.0))
return ERROR_RANGE;
value = volt * (float)0xFFF / 5;
if ( ad7294.set_dac(channel,value) == AD7294_I2C_WRITE_OK )
return OK;
else
return ERROR_COMM;
}
HFAMP400_Status HFAMP400::get_ad7294_adcvalue(AD7294_ADC_CHANNEL channel, int *adcvalue)
{
uint32_t now;
if (!checkboundaries((int)channel, (int)(AD7294_ADC_CHANNEL)AD7294_ADC_CH_VIN_0, (int)(AD7294_ADC_CHANNEL)AD7294_ADC_CH_VIN_3))
return ERROR_CHANNEL;
now = micros();
if( (now - ad7294.adc_results[channel].timestamp) > AD7294_ADC_RESULT_VALID_US)
if( ad7294.readadcs_autocycling() == AD7294_TIMEOUT)
return ERROR_COMM;
*adcvalue = ad7294.adc_results[channel].value;
return OK;
}
HFAMP400_Status HFAMP400::get_temperature(TEMPERATURE_CHANNEL channel, float *temp)
{
switch(channel)
{
case TEMP_CH_D1:
case TEMP_CH_D2:
case TEMP_CH_AD7294:
if( ad7294.read_temperature(channel, temp) != AD7294_I2C_READ_OK )
return ERROR_COMM;
else
return OK;
break;
case TEMP_CH_BOARD:
if( ad7415.read_temperature(temp) != AD7415_I2C_READ_OK )
return ERROR_COMM;
else
return OK;
break;
default:
return ERROR_CHANNEL;
}
}
HFAMP400_Status HFAMP400::set_current_scaling(FUSE_CHANNEL channel, float factor)
{
if (!checkboundaries((int)channel, (int)(FUSE_CHANNEL)FUSE_CH_1, (int)(FUSE_CHANNEL)FUSE_CH_3))
return ERROR_CHANNEL;
current_factor[channel] = factor;
return OK;
}
HFAMP400_Status HFAMP400::set_voltage_scaling(FUSE_CHANNEL channel, float factor)
{
if (!checkboundaries((int)channel, (int)(FUSE_CHANNEL)FUSE_CH_1, (int)(FUSE_CHANNEL)FUSE_CH_3))
return ERROR_CHANNEL;
voltage_factor[channel] = factor;
return OK;
}
HFAMP400_Status HFAMP400::get_fuse_current(FUSE_CHANNEL channel, float *current)
{
int adc;
AD7294_ADC_CHANNEL ad7294_channel;
HFAMP400_Status status = OK;
if (!checkboundaries((int)channel, (int)(FUSE_CHANNEL)FUSE_CH_1, (int)(FUSE_CHANNEL)FUSE_CH_3))
return ERROR_CHANNEL;
if(channel == FUSE_CH_3)
{
adc = analogRead(A5);
} else {
if (channel == FUSE_CH_1)
ad7294_channel = AD7294_ADC_CH_VIN_0;
else
ad7294_channel = AD7294_ADC_CH_VIN_2;
status = get_ad7294_adcvalue(ad7294_channel, &adc);
}
#ifdef DEBUG_CURRENT
Serial.print("current adc = ");
Serial.println(adc);
#endif
if (status == OK)
//*current = (adc - current_offset[(int)channel - FUSE_CH_1]) * current_factor[(int)channel - FUSE_CH_1];
*current = (adc) * current_factor[(int)channel - FUSE_CH_1];
return status;
}
HFAMP400_Status HFAMP400::get_fuse_voltage(FUSE_CHANNEL channel, float *voltage)
{
int ch;
if (!checkboundaries((int)channel, (int)(FUSE_CHANNEL)FUSE_CH_1, (int)(FUSE_CHANNEL)FUSE_CH_3))
return ERROR_CHANNEL;
switch(channel)
{
case FUSE_CH_1:
ch = A2;
break;
case FUSE_CH_2:
ch = A3;
break;
case FUSE_CH_3:
ch = A4;
break;
}
*voltage = analogRead(ch) * voltage_factor[(int)channel - FUSE_CH_1];
return OK;
}
HFAMP400_Status HFAMP400::get_hfpower(HFPOWER_CHANNEL channel, float *power)
{
HFAMP400_Status res;
float voltage;
if (!checkboundaries((int)channel, (int)(HFPOWER_CHANNEL)HF_CH_FORWARD_1, (int)(HFPOWER_CHANNEL)HF_CH_RETURN_2))
return ERROR_CHANNEL;
res = get_adl5513_voltage(channel, &voltage);
if (res != OK)
return res;
*power = voltage_to_hfpower(channel, voltage);
#ifdef DEBUG
Serial.print("HF-Power Channel=");
Serial.print((int)channel);
Serial.print(" voltage= ");
Serial.print(voltage,4);
Serial.print(" power= ");
Serial.println(*power,4);
#endif
return OK;
}
HFAMP400_Status HFAMP400::set_working_frequency(float frequency)
{
float scale, offset;
int i;
HFPOWER_CONVERSION hf_conv;
working_frequency = frequency;
for (i = HF_CH_FORWARD_1; i <= HF_CH_RETURN_2; i++) {
hfpowercal.get_hfpower_conversion( (HFPOWER_CHANNEL)i, frequency, &hf_conv);
set_hfpower_conversion( (HFPOWER_CHANNEL)i, hf_conv );
}
return OK;
}
HFAMP400_Status HFAMP400::set_hfpower_conversion(HFPOWER_CHANNEL channel, HFPOWER_CONVERSION hf_conv)
{
if (!checkboundaries((int)channel, (int)(HFPOWER_CHANNEL)HF_CH_FORWARD_1, (int)(HFPOWER_CHANNEL)HF_CH_RETURN_2))
return ERROR_CHANNEL;
memcpy(&hfpower_conversion[(int)channel],&hf_conv, sizeof( HFPOWER_CONVERSION ));
return OK;
}
HFAMP400_Status HFAMP400::set_hfpower_modulation_factor(HFPOWER_CHANNEL channel, float factor)
{
if (!checkboundaries((int)channel, (int)(HFPOWER_CHANNEL)HF_CH_FORWARD_1, (int)(HFPOWER_CHANNEL)HF_CH_RETURN_2))
return ERROR_CHANNEL;
hfpower_modulation_factor[(int)(channel-HF_CH_FORWARD_1)] = factor;
return OK;
}
HFAMP400_Status HFAMP400::get_adl5513_voltage(HFPOWER_CHANNEL channel, float *voltage)
{
HFAMP400_Status res=OK;
int adc_voltage;
switch(channel)
{
case HF_CH_FORWARD_1:
*voltage = analogRead(A0) * 3.3 / (float)0xFFF;
break;
case HF_CH_FORWARD_2:
*voltage = analogRead(A1) * 3.3 / (float)0xFFF;
break;
case HF_CH_RETURN_1:
res = get_ad7294_adcvalue(AD7294_ADC_CH_VIN_1, &adc_voltage);
*voltage = (float)adc_voltage * 2.5 / (float)0xFFF;
break;
case HF_CH_RETURN_2:
res = get_ad7294_adcvalue(AD7294_ADC_CH_VIN_3, &adc_voltage);
*voltage = (float)adc_voltage * 2.5 / (float)0xFFF;
break;
}
return res;
}
bool HFAMP400::checkboundaries( float var, float min_value, float max_value)
{
if(var >= min_value && var <=max_value)
return true;
else
return false;
}
bool HFAMP400::checkboundaries( int var, int min_value, int max_value)
{
if(var >= min_value && var <=max_value)
return true;
else
return false;
}
int HFAMP400::read_line(char* buffer, int bufsize)
{
for (int index = 0; index < bufsize; index++) {
// Wait until characters are available
while (Serial.available() == 0) {
}
char ch = Serial.read(); // read next character
Serial.print(ch); // echo it back: useful with the serial monitor (optional)
if (ch == '\n' || ch == '\r') {
buffer[index] = 0; // end of line reached: null terminate string
return index; // success: return length of string (zero if string is empty)
}
buffer[index] = ch; // Append character to buffer
}
// Reached end of buffer, but have not seen the end-of-line yet.
// Discard the rest of the line (safer than returning a partial line).
char ch;
do {
// Wait until characters are available
while (Serial.available() == 0) {
}
ch = Serial.read(); // read next character (and discard it)
Serial.print(ch); // echo it back
} while (ch != '\n');
buffer[0] = 0; // set buffer to empty string even though it should not be used
return -1; // error: return negative one to indicate the input was too long
}
void HFAMP400::run_hfpower_calibration(void)
{
run_hfpower_calibration(0xF);
}
void HFAMP400::run_voltage_calibration(void)
{
int i,j,k;
float voltage,average,factor;
char cstring[31];
set_voltage_scaling(FUSE_CH_1, HFAMP400_DEFAULT_VOLTAGE_SCALING);
set_voltage_scaling(FUSE_CH_2, HFAMP400_DEFAULT_VOLTAGE_SCALING);
set_voltage_scaling(FUSE_CH_3, HFAMP400_DEFAULT_VOLTAGE_SCALING);
Serial.println("===============================");
Serial.println("= calibration routine started =");
Serial.println("===============================");
for(i = FUSE_CH_1; i <= FUSE_CH_3; i++)
{
Serial.print("Apply 12V to Channel ");
Serial.println(i-FUSE_CH_1+1);
while( Serial.available() == 0 ) {
get_fuse_voltage((FUSE_CHANNEL)i, &voltage);
Serial.println(voltage);
delay(1000);
}
read_line(cstring, 1);
average = 0.0;
for(k = 0; k <= 3; k++)
{
get_fuse_voltage((FUSE_CHANNEL)i, &voltage);
average += voltage;
delay(200);
}
average /= 4.0;
Serial.print("Measured: ");
Serial.print(average);
Serial.print(" @ Channel ");
Serial.println(i+1);
factor = 12.0 / average * HFAMP400_DEFAULT_VOLTAGE_SCALING;
hfpowercal.eeprom.write_buffer(EE_VOLTAGE_CALIBRATION+sizeof(float)*(i-FUSE_CH_1), (byte *)&factor,sizeof(float));
}
Serial.println("=================================");
Serial.println("= Voltage calibration completed =");
Serial.println("=================================");
read_line(cstring, 1);
}
void HFAMP400::run_current_calibration(void)
{
int i,j,k;
float current,average,factor;
char cstring[31];
set_current_scaling(FUSE_CH_1, HFAMP400_DEFAULT_CURRENT_SCALING);
set_current_scaling(FUSE_CH_2, HFAMP400_DEFAULT_CURRENT_SCALING);
Serial.println("===============================");
Serial.println("= calibration routine started =");
Serial.println("===============================");
for(i = FUSE_CH_1; i <= FUSE_CH_2; i++)
{
Serial.print("Apply 2A to Channel ");
Serial.println(i-FUSE_CH_1+1);
while( Serial.available() == 0 ) {
get_fuse_current((FUSE_CHANNEL)i, ¤t);
Serial.println(current);
delay(1000);
}
read_line(cstring, 1);
average = 0.0;
for(k = 0; k <= 3; k++)
{
get_fuse_current((FUSE_CHANNEL)i, ¤t);
average += current;
delay(200);
}
average /= 4.0;
Serial.print("Measured: ");
Serial.print(average);
Serial.print(" @ Channel ");
Serial.println(i+1);
factor = 2.0 / average * HFAMP400_DEFAULT_CURRENT_SCALING;
hfpowercal.eeprom.write_buffer(EE_CURRENT_CALIBRATION+sizeof(float)*(i-FUSE_CH_1), (byte*)&factor,sizeof(float));
}
Serial.println("=================================");
Serial.println("= Current calibration completed =");
Serial.println("=================================");
read_line(cstring, 1);
}
void HFAMP400::run_hfpower_calibration(uint8_t mask)
{
int i,j,k;
int takepoints;
char cstring[31];
float voltage,voltage_neg20dBm[MAX_CAL_POINTS],voltage_neg40dBm[MAX_CAL_POINTS],freqs[MAX_CAL_POINTS],curr_freq;
String calid;
takepoints = (int)(sizeof(hfpowercal.std_frequency_table)/sizeof(float));
hfpowercal.write_num_points(takepoints);
Serial.println("===============================");
Serial.println("= calibration routine started =");
Serial.println("===============================");
Serial.print("configured for ");
Serial.print(takepoints);
Serial.println(" calibration points per channel");
Serial.print("Enter calibration id-string: ");
read_line(cstring, 30);
if(cstring[0])
hfpowercal.write_cal_string(cstring);
#ifdef DEBUG
Serial.println("");
Serial.println(mask,HEX);
Serial.println("");
#endif
for(i = HF_CH_FORWARD_1; i <= HF_CH_RETURN_2; i++)
{
if (!(mask & bit(i))) continue;
Serial.print("Connect HF-Generator with to Channel ");
Serial.println(i);
while( Serial.available() == 0 ) {
get_adl5513_voltage((HFPOWER_CHANNEL)i, &voltage);
Serial.println(voltage);
delay(1000);
}
read_line(cstring, 1);
for( j = 0; j < takepoints; j++)
{
freqs[j] = curr_freq = hfpowercal.std_frequency_table[j];
Serial.print("Set Frequency to ");
Serial.print(curr_freq/1e6);
Serial.println("Mhz and Power to -20dBm");
Serial.println("Press ENTER when ready");
read_line(cstring, 1);
voltage_neg20dBm[j] = 0.0;
for(k = 0; k <= 3; k++)
{
get_adl5513_voltage((HFPOWER_CHANNEL)i, &voltage);
voltage_neg20dBm[j] += voltage;
delay(200);
}
voltage_neg20dBm[j] /= 4.0;
Serial.print("Measured: ");
Serial.print(voltage_neg20dBm[j]);
Serial.print(" @ ");
Serial.print(curr_freq/1e6);
Serial.println("Mhz (-20dBm)");
}
for( j = 0; j < takepoints; j++)
{
curr_freq = hfpowercal.std_frequency_table[j];
Serial.print("Set Frequency to ");
Serial.print(curr_freq/1e6);
Serial.println("Mhz and Power to -40dBm");
Serial.println("Press ENTER when ready");
read_line(cstring, 1);
voltage_neg40dBm[j] = 0.0;
for(k = 0; k <= 3; k++)
{
get_adl5513_voltage((HFPOWER_CHANNEL)i, &voltage);
voltage_neg40dBm[j] += voltage;
delay(200);
}
voltage_neg40dBm[j] /= 4.0;
Serial.print("Measured: ");
Serial.print(voltage_neg40dBm[j]);
Serial.print(" @ ");
Serial.print(curr_freq/1e6);
Serial.println("Mhz (-40dBm)");
}
for( j = 0; j < takepoints; j++)
{
hfpowercal.write_point(j,(HFPOWER_CHANNEL)i, freqs[j], voltage_neg20dBm[j],voltage_neg40dBm[j]);
}
}
Serial.println("=========================");
Serial.println("= calibration completed =");
Serial.println("=========================");
read_line(cstring, 1);
}
HFAMP400_Status HFAMP400::set_alert_limit(ALERT_LIMIT limit, float max_value)
{
float min_value = 0;
switch(limit)
{
case ALERT_TEMP_D1:
case ALERT_TEMP_D2:
case ALERT_TEMP_AD7294:
min_value = -40.0; //deg C
break;
case ALERT_HFPOWER_RETURN_1:
case ALERT_HFPOWER_RETURN_2:
min_value = -80.0; //dBm
break;
case ALERT_CURRENT_FUSE_1:
case ALERT_CURRENT_FUSE_2:
min_value = 0.0; // Ampere
break;
}
return set_alert_limit(limit, min_value, max_value);
}
HFAMP400_Status HFAMP400::set_alert_limit(ALERT_LIMIT limit, float min_value, float max_value)
{
uint16_t conv_min, conv_max,hyst;
AD7294_Limits ad7294_limit;
AD7294_Status res;
switch(limit)
{
case ALERT_TEMP_D1:
case ALERT_TEMP_D2:
case ALERT_TEMP_AD7294:
conv_min = ad7294.temp_float_to_limitreg(min_value);
conv_max = ad7294.temp_float_to_limitreg(max_value);
hyst = 0x3FE;
break;
case ALERT_HFPOWER_RETURN_1:
conv_min = hfpower_float_to_limitreg(HF_CH_RETURN_1,min_value);
conv_max = hfpower_float_to_limitreg(HF_CH_RETURN_1,max_value);
hyst = 0xFFE;
#ifdef DEBUG
Serial.print("HF-Limit min= ");
Serial.print(conv_min);
Serial.print(" max= ");
Serial.println(conv_max);
#endif
break;
case ALERT_HFPOWER_RETURN_2:
conv_min = hfpower_float_to_limitreg(HF_CH_RETURN_2,min_value);
conv_max = hfpower_float_to_limitreg(HF_CH_RETURN_2,max_value);
hyst = 0xFFE;
break;
case ALERT_CURRENT_FUSE_1:
conv_min = (1/current_factor[FUSE_CH_1]) * min_value;
conv_max = (1/current_factor[FUSE_CH_1]) * max_value;
hyst = 0xFFE;
break;
case ALERT_CURRENT_FUSE_2:
conv_min = (1/current_factor[FUSE_CH_2]) * min_value;
conv_max = (1/current_factor[FUSE_CH_2]) * max_value;
hyst = 0xFFE;
break;
}
switch(limit)
{
case ALERT_TEMP_D1:
ad7294_limit = AD7294_LIMIT_TSENSE_1;
break;
case ALERT_TEMP_D2:
ad7294_limit = AD7294_LIMIT_TSENSE_2;
break;
case ALERT_TEMP_AD7294:
ad7294_limit = AD7294_LIMIT_TSENSE_INT;
break;
case ALERT_HFPOWER_RETURN_1:
ad7294_limit = AD7294_LIMIT_VIN_1;
break;
case ALERT_HFPOWER_RETURN_2:
ad7294_limit = AD7294_LIMIT_VIN_3;
break;
case ALERT_CURRENT_FUSE_1:
ad7294_limit = AD7294_LIMIT_VIN_0;
break;
case ALERT_CURRENT_FUSE_2:
ad7294_limit = AD7294_LIMIT_VIN_2;
break;
}
#ifdef DEBUG
Serial.print("Limit(min.) converted ");
Serial.println((int)conv_min,HEX);
Serial.print("Limit(max.) converted ");
Serial.println((int)conv_max,HEX);
#endif
res=ad7294.set_limit( ad7294_limit, conv_min, conv_max, hyst);
if(res != AD7294_I2C_WRITE_OK)
return ERROR_COMM;
return OK;
}
float HFAMP400::voltage_to_hfpower(HFPOWER_CHANNEL channel,float voltage)
{
float power;
power = (voltage-hfpower_conversion[(int)channel].offset_neg40dBm)/hfpower_conversion[(int)channel].scale - 40.0;
power *= hfpower_modulation_factor[(int)channel]; //apply correction factor
return power;
}
uint16_t HFAMP400::hfpower_float_to_limitreg(HFPOWER_CHANNEL channel,float power)
{
float res;
//ATTENTION: modulation factor is not taken into consideration
res = (power + 40.0) * hfpower_conversion[(int)channel].scale + hfpower_conversion[(int)channel].offset_neg40dBm;
return (res / 2.5) * 0xFFF;
}
HFAMP400 hfamp400;