-
Notifications
You must be signed in to change notification settings - Fork 0
/
testCNN.py
107 lines (89 loc) · 4.31 KB
/
testCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
'''
code for textCNN
'''
import tensorflow as tf
import numpy as np
tf.reset_default_graph()
# Text-CNN Parameter
embedding_size = 2 # n-gram
sequence_length = 3
num_classes = 2 # 0 or 1
filter_sizes = [2, 2, 2] # n-gram window
num_filters = 3
# 3 words sentences (=sequence_length is 3)
sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
labels = [1, 1, 1, 0, 0, 0] # 1 is good, 0 is not good.
word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}
vocab_size = len(word_dict)
class TextCNN(object):
def __init__(self):
self.sequence_length = sequence_length
self.vocab_size = vocab_size
self.embedding_size = embedding_size
inputs = []
for sen in sentences:
inputs.append(np.asarray([word_dict[n] for n in sen.split()]))
outputs = []
for out in labels:
outputs.append(np.eye(num_classes)[out]) # ONE-HOT : To using Tensor Softmax Loss function
def train(self):
# Model
# add_placeholders
X = tf.placeholder(tf.int32, [None, sequence_length])
Y = tf.placeholder(tf.int32, [None, num_classes])
#inference
W = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0))
embedded_chars = tf.nn.embedding_lookup(W, X) # [batch_size, sequence_length, embedding_size]
embedded_chars = tf.expand_dims(embedded_chars,
-1) # add channel(=1) [batch_size, sequence_length, embedding_size, 1]
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1))
b = tf.Variable(tf.constant(0.1, shape=[num_filters]))
conv = tf.nn.conv2d(embedded_chars, # [batch_size, sequence_length, embedding_size, 1]
W, # [filter_size(n-gram window), embedding_size, 1, num_filters(=3)]
strides=[1, 1, 1, 1],
padding='VALID')
h = tf.nn.relu(tf.nn.bias_add(conv, b))
pooled = tf.nn.max_pool(h,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
# [batch_size, filter_height, filter_width, channel]
strides=[1, 1, 1, 1],
padding='VALID')
pooled_outputs.append(
pooled) # dim of pooled : [batch_size(=6), output_height(=1), output_width(=1), channel(=1)]
num_filters_total = num_filters * len(filter_sizes)
h_pool = tf.concat(pooled_outputs,
num_filters) # h_pool : [batch_size(=6), output_height(=1), output_width(=1), channel(=1) * 3]
h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total]) # [batch_size, ]
# Model-Training
Weight = tf.get_variable('W', shape=[num_filters_total, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
Bias = tf.Variable(tf.constant(0.1, shape=[num_classes]))
model = tf.nn.xw_plus_b(h_pool_flat, Weight, Bias)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=model, labels=Y))
optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)
# Model-Predict
hypothesis = tf.nn.softmax(model)
predictions = tf.argmax(hypothesis, 1)
# Training
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for epoch in range(5000):
_, loss = sess.run([optimizer, cost], feed_dict={X: inputs, Y: outputs})
if (epoch + 1) % 1000 == 0:
print('Epoch:', '%06d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
# Test
test_text = 'sorry hate you'
tests = []
tests.append(np.asarray([word_dict[n] for n in test_text.split()]))
predict = sess.run([predictions], feed_dict={X: tests})
result = predict[0][0]
if result == 0:
print(test_text, "is Bad Mean...")
else:
print(test_text, "is Good Mean!!")