forked from TheAlgorithms/JavaScript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Fibonacci.js
195 lines (168 loc) · 5.09 KB
/
Fibonacci.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Extension_to_negative_integers
const FibonacciIterative = (num) => {
const isNeg = num < 0
if (isNeg) num *= -1
const sequence = [0]
if (num >= 1) sequence.push(1)
if (num >= 2) sequence.push(isNeg ? -1 : 1)
for (let i = 2; i < num; i++) {
sequence.push(
isNeg ? sequence[i - 1] - sequence[i] : sequence[i] + sequence[i - 1]
)
}
return sequence
}
const FibonacciGenerator = function * (neg) {
let a = 0
let b = 1
yield a
while (true) {
yield b;
[a, b] = neg ? [b, a - b] : [b, a + b]
}
}
const list = []
const FibonacciRecursive = (num) => {
const isNeg = num < 0
if (isNeg) num *= -1
return (() => {
switch (list.length) {
case 0:
list.push(0)
return FibonacciRecursive(num)
case 1:
list.push(1)
return FibonacciRecursive(num)
case num + 1:
return list
default:
list.push(list.at(-1) + list.at(-2))
return FibonacciRecursive(num)
}
})().map((fib, i) => fib * (isNeg ? (-1) ** (i + 1) : 1))
}
const dict = new Map()
const FibonacciRecursiveDP = (stairs) => {
const isNeg = stairs < 0
if (isNeg) stairs *= -1
if (stairs <= 1) return stairs
// Memoize stair count
if (dict.has(stairs)) return (isNeg ? (-1) ** (stairs + 1) : 1) * dict.get(stairs)
const res = FibonacciRecursiveDP(stairs - 1) + FibonacciRecursiveDP(stairs - 2)
dict.set(stairs, res)
return (isNeg ? (-1) ** (stairs + 1) : 1) * res
}
// Algorithms
// Calculates Fibonacci(n) such that Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n - 2)
// Fibonacci(0) = Fibonacci(1) = 1
// Uses a bottom up dynamic programming approach
// Solve each sub-problem once, using results of previous sub-problems
// which are n-1 and n-2 for Fibonacci numbers
// Although this algorithm is linear in space and time as a function
// of the input value n, it is exponential in the size of n as
// a function of the number of input bits
// @Satzyakiz
const FibonacciDpWithoutRecursion = (num) => {
const isNeg = num < 0
if (isNeg) num *= -1
const table = [0]
table.push(1)
table.push(isNeg ? -1 : 1)
for (let i = 2; i < num; ++i) {
table.push(
isNeg ? table[i - 1] - table[i] : table[i] + table[i - 1]
)
}
return table
}
// Using Matrix exponentiation to find n-th fibonacci in O(log n) time
const copyMatrix = (A) => {
return A.map(row => row.map(cell => cell))
}
const Identity = (size) => {
const isBigInt = typeof size === 'bigint'
const ZERO = isBigInt ? 0n : 0
const ONE = isBigInt ? 1n : 1
size = Number(size)
const I = Array(size).fill(null).map(() => Array(size).fill())
return I.map((row, rowIdx) => row.map((_col, colIdx) => {
return rowIdx === colIdx ? ONE : ZERO
}))
}
// A of size (l x m) and B of size (m x n)
// product C will be of size (l x n).
// both matrices must have same-type numeric values
// either both BigInt or both Number
const matrixMultiply = (A, B) => {
A = copyMatrix(A)
B = copyMatrix(B)
const isBigInt = typeof A[0][0] === 'bigint'
const l = A.length
const m = B.length
const n = B[0].length // Assuming non-empty matrices
const C = Array(l).fill(null).map(() => Array(n).fill())
for (let i = 0; i < l; i++) {
for (let j = 0; j < n; j++) {
C[i][j] = isBigInt ? 0n : 0
for (let k = 0; k < m; k++) {
C[i][j] += A[i][k] * B[k][j]
}
}
}
return C
}
/**
* Computes A raised to the power n i.e. pow(A, n) where A is a square matrix
* @param {*} A the square matrix
* @param {*} n the exponent
*/
// A is a square matrix
const matrixExpo = (A, n) => {
A = copyMatrix(A)
const isBigInt = typeof n === 'bigint'
const ZERO = isBigInt ? 0n : 0
const TWO = isBigInt ? 2n : 2
// Just like Binary exponentiation mentioned in ./BinaryExponentiationIterative.js
let result = Identity((isBigInt ? BigInt : Number)(A.length)) // Identity matrix
while (n > ZERO) {
if (n % TWO !== ZERO) result = matrixMultiply(result, A)
n /= TWO
if (!isBigInt) n = Math.floor(n)
if (n > ZERO) A = matrixMultiply(A, A)
}
return result
}
const FibonacciMatrixExpo = (num) => {
const isBigInt = typeof num === 'bigint'
const ZERO = isBigInt ? 0n : 0
const ONE = isBigInt ? 1n : 1
// F(0) = 0, F(1) = 1
// F(n) = F(n-1) + F(n-2)
// Consider below matrix multiplication:
// | F(n) | |1 1| |F(n-1)|
// | | = | | * | |
// |F(n-1)| |1 0| |F(n-2)|
// Let's rewrite it as F(n, n-1) = A * F(n-1, n-2)
// or F(n, n-1) = A * A * F(n-2, n-3)
// or F(n, n-1) = pow(A, n-1) * F(1, 0)
if (num === ZERO) return num
const isNeg = num < 0
if (isNeg) num *= -ONE
const A = [
[ONE, ONE],
[ONE, ZERO]
]
const poweredA = matrixExpo(A, num - ONE) // A raised to the power n-1
let F = [
[ONE],
[ZERO]
]
F = matrixMultiply(poweredA, F)
return F[0][0] * (isNeg ? (-ONE) ** (num + ONE) : ONE)
}
export { FibonacciDpWithoutRecursion }
export { FibonacciIterative }
export { FibonacciGenerator }
export { FibonacciRecursive }
export { FibonacciRecursiveDP }
export { FibonacciMatrixExpo }