-
Notifications
You must be signed in to change notification settings - Fork 7
/
p3D_acoustic_O24.c
executable file
·941 lines (711 loc) · 26.3 KB
/
p3D_acoustic_O24.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
/*
3D acoustic wave propagation in homogeneous isotropic media, using PETSc
2017
PETSc - Portable, Extensible Toolkit for Scientific Computation
https://www.mcs.anl.gov/petsc/
# TECH DETAILS:
Finite-Differences in Time Domain (FDTD)
Implicit time stepping
O(2,4)
Schemes derived from Taylor series: in space [-1:16:-30:16:-1]/12dx2, in time [2:-5:4:-1]/dt2
# HOW TO USE: (PETSc has to be installed)
make all
./run_O24.sh
Author: Oleg Ovcharenko, PhD student at KAUST (ErSE, ECRC)
Email: oleg.ovcharenko@kaust.edu.sa
*/
#include <stdio.h>
#include <petscdmda.h>
#include <petscksp.h>
#include <math.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#define debprint(expr) PetscPrintf(PETSC_COMM_WORLD, #expr " = %f \n", expr);
// Constants
#define PI 3.1415926535
#define DEGREES_TO_RADIANS PI/180.f
//User-functions prototypes
PetscErrorCode compute_A_u(KSP, Mat, Mat, void *); // Build A, for Ax=b
PetscErrorCode update_b_u(KSP, Vec, void *); // Build b, for Ax=b
PetscErrorCode save_Vec_to_m_file(Vec, void *); // Save wavefield into MATLAB .m file
PetscErrorCode Save_seismograms_to_txt_files(KSP, void *); // Save seism. to .txt files
PetscErrorCode source_term(void *); // Compute source term for current time step
PetscErrorCode Write_seismograms(KSP, Vec, void *); // Append new value to the seismograms
PetscScalar ***f3tensor(PetscInt, PetscInt, PetscInt, PetscInt,PetscInt, PetscInt); // Create 3D array
/*
User-defined structures
*/
// Wavefield
typedef struct {
Vec u; // Pressure wavefield at T
Vec um1; // Pressure wavefield at T-1
Vec um2; // Pressure wavefield at T-2
Vec um3; // Pressure wavefield at T-3
} wfield;
// Model parameters
typedef struct {
PetscInt nx; // Number of grid points along X
PetscInt ny;
PetscInt nz;
PetscScalar dx; // Grid spacing [km]
PetscScalar dy;
PetscScalar dz;
PetscScalar xmax; // Limits along OX, xmin ... xmax [km]
PetscScalar xmin;
PetscScalar ymax;
PetscScalar ymin;
PetscScalar zmax;
PetscScalar zmin;
PetscScalar vel; // Wave propagation velocity [km/s]
} model_par;
typedef struct{
PetscScalar dt; // Time step [s]
PetscScalar t0;
PetscScalar tmax; // Total simulation time [s]
PetscScalar t; // Current simulation time [s]
PetscInt it; // Current simulation step
PetscInt nt; // Total simulation steps
} time_par;
typedef struct{
PetscInt isrc; // Source position, in grid points
PetscInt jsrc;
PetscInt ksrc;
PetscScalar factor; // Source ampliturde
PetscScalar angle_force;
PetscScalar f0; // Source frequency
PetscScalar fx; // Force x component
PetscScalar fy;
PetscScalar fz;
} source;
typedef struct
{
PetscInt nrec; // Number of receivers
PetscInt *irec; // Receiver positions, in grid points
PetscInt *jrec;
PetscInt *krec;
PetscScalar ***seis; // Array to store seismograms [nrec][nt][2]
} receivers;
typedef struct { // User context that gathers all the structures above
wfield wf;
model_par model;
time_par time;
source src;
receivers rec;
} ctx_t;
typedef int bool; // TRUE-FALSE definition
#define true 1
#define false 0
/*
Main function
*/
int
main(int argc, char * args[])
{
/*
VARIABLES
*/
bool FOUTPUT = true; // Print information each IT_DISPLAY steps
bool SAVE_WAVEFIELD_MATLAB = false; // Save the whole wavefield to .m file each IT_DISPLAY steps
int IT_DISPLAY = 50; // Number of time steps to give output
struct stat st = {0};
// Create folders for output if they are missing
if (stat("./seism/", &st) == -1)
{
mkdir("./seism/", 0700);
}
if (stat("./wavefields/", &st) == -1)
{
mkdir("./wavefields/", 0700);
}
PetscErrorCode ierr; // PETSc error code
DM da; // Mesh-object
// Initialize the PETSc database and MPI
ierr = PetscInitialize(&argc, &args, NULL, NULL); CHKERRQ(ierr);
MPI_Comm comm = PETSC_COMM_WORLD; // The global PETSc MPI communicator
Vec b, *pu;
Vec *pum1;
Vec *pum2;
Vec *pum3;
PetscScalar *pvel;
PetscScalar *pdx, *pdy, *pdz, *pxmax, *pymax, *pzmax;
PetscScalar *pt0, *pdt, *ptmax;
PetscScalar norm;
PetscInt *pnx, *pny, *pnz, *pnt;
PetscInt tmp;
ctx_t ctx, *pctx; // User context structure
clock_t total_time_begin, total_time_end;
total_time_begin = clock(); // Start total time counter
/*
LIST OF POINTERS
*/
pctx = &ctx;
pu = &ctx.wf.u;
pum1 = &ctx.wf.um1;
pum2 = &ctx.wf.um2;
pum3 = &ctx.wf.um3;
pnx = &ctx.model.nx;
pny = &ctx.model.ny;
pnz = &ctx.model.nz;
pdx = &ctx.model.dx;
pdy = &ctx.model.dy;
pdz = &ctx.model.dz;
pxmax = &ctx.model.xmax;
pymax = &ctx.model.ymax;
pzmax = &ctx.model.zmax;
pvel = &ctx.model.vel;
pnt = &ctx.time.nt;
pt0 = &ctx.time.t0;
pdt = &ctx.time.dt;
ptmax = &ctx.time.tmax;
/*
CREATE DMDA OBJECT. MESH
*/
ierr = DMDACreate3d(comm, DM_BOUNDARY_GHOSTED, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, // Create mesh
DMDA_STENCIL_STAR, -32, -32, -32, PETSC_DECIDE, PETSC_DECIDE,
PETSC_DECIDE, 1, 2, NULL, NULL, NULL, &da); CHKERRQ(ierr);
ierr = DMDAGetInfo(da,0,pnx, pny, pnz, 0,0,0,0,0,0,0,0,0); CHKERRQ(ierr); // Get NX, NY, NZ
/*
CREATE GLOBAL VEC OBJECTS
*/
ierr = DMCreateGlobalVector(da, pu); CHKERRQ(ierr); // Create a global u vector derived from the DM object
ierr = VecDuplicate(*pu, &b); CHKERRQ(ierr); // RHS of the system
ierr = VecDuplicate(*pu, pum1); CHKERRQ(ierr); // u at time n-1
ierr = VecDuplicate(*pu, pum2); CHKERRQ(ierr); // u at time n-2
ierr = VecDuplicate(*pu, pum3); CHKERRQ(ierr); // u at time n-3
/*
SET MODEL PATRAMETERS
*/
// Wave propagation VELOCITY
*pvel = 3.5f;
ierr = PetscOptionsGetReal(NULL, NULL, "-vel",&ctx.model.vel, NULL); CHKERRQ(ierr); //input on-the-fly
// MODEL SIZE Xmax Ymax Zmax in meters
*pxmax = 8.f; //[km]
*pymax = 8.f;
*pzmax = 8.f;
ierr = PetscOptionsGetReal(NULL, NULL, "-xmax",&ctx.model.xmax, NULL); CHKERRQ(ierr);
ierr = PetscOptionsGetReal(NULL, NULL, "-ymax",&ctx.model.ymax, NULL); CHKERRQ(ierr);
ierr = PetscOptionsGetReal(NULL, NULL, "-zmax",&ctx.model.zmax, NULL); CHKERRQ(ierr);
// GRID STEP DX DY and DZ
*pdx = *pxmax / *pnx; //[km]
*pdy = *pymax / *pny;
*pdz = *pzmax / *pnz;
PetscScalar cmax, cmin, lambda_min;
cmin = *pvel;
cmax = *pvel;
// TIME STEPPING PARAMETERS
*pdt = (*pdx) / cmax; //[sec], to have CFL = 1, could be set from runtime
ierr = PetscOptionsGetReal(NULL, NULL, "-dt",&ctx.time.dt, NULL); CHKERRQ(ierr);
*ptmax = 1.f; //[sec]
ierr = PetscOptionsGetReal(NULL, NULL, "-tmax",&ctx.time.tmax, NULL); CHKERRQ(ierr);
*pnt = *ptmax / *pdt;
// SOURCE PARAMETERS
ctx.src.isrc = (PetscInt) *pnx / 2;
ctx.src.jsrc = (PetscInt) *pny / 2;
ctx.src.ksrc = (PetscInt) *pnz / 2;
ierr = PetscOptionsGetInt(NULL, NULL, "-isrc",&ctx.src.isrc, NULL); CHKERRQ(ierr);
ierr = PetscOptionsGetInt(NULL, NULL, "-jsrc",&ctx.src.jsrc, NULL); CHKERRQ(ierr);
ierr = PetscOptionsGetInt(NULL, NULL, "-ksrc",&ctx.src.ksrc, NULL); CHKERRQ(ierr);
ctx.src.f0 = 20.f; //[Hz]
ierr = PetscOptionsGetReal(NULL, NULL, "-f0",&ctx.src.f0, NULL); CHKERRQ(ierr);
ctx.src.factor = pow(10.f,7); //amplitude
ctx.src.angle_force = 90; // degrees
lambda_min = cmin / ctx.src.f0; // Min wavelength in model
// RECEIVERS
ctx.rec.nrec = 20; // Number of receivers
ierr = PetscOptionsGetInt(NULL, NULL, "-nrec",&ctx.rec.nrec, NULL); CHKERRQ(ierr);
PetscInt irec[ctx.rec.nrec], *pirec; // Arrays for rec positions
PetscInt jrec[ctx.rec.nrec], *pjrec;
PetscInt krec[ctx.rec.nrec], *pkrec;
pirec = &irec[0];
pjrec = &jrec[0];
pkrec = &krec[0];
// Place receivers on diogonal
int i;
for (i = 0; i < ctx.rec.nrec; i++)
{
*(pirec + i) = (PetscInt) (ctx.rec.nrec - i) * (ctx.model.nx) / ctx.rec.nrec;
*(pjrec + i) = (PetscInt) (ctx.rec.nrec - i) * (ctx.model.ny) / ctx.rec.nrec;
*(pkrec + i) = (PetscInt) (ctx.rec.nrec - i) * (ctx.model.nz) / ctx.rec.nrec;
}
ctx.rec.irec = irec;
ctx.rec.jrec = jrec;
ctx.rec.krec = krec;
//Array with seismograms [NREC][NT][2], 2 is for time and displacement colums
PetscScalar ***seis;
seis = f3tensor(0,ctx.rec.nrec,0,*pnt,0,2);
ctx.rec.seis = seis;
// OUTPUT
PetscPrintf(PETSC_COMM_WORLD,"MODEL:\n");
PetscPrintf(PETSC_COMM_WORLD,"\t XMAX %f \t DX %f km \t NX %i\n", *pxmax, *pdx, *pnx);
PetscPrintf(PETSC_COMM_WORLD,"\t YMAX %f \t DY %f km \t NY %i\n", *pymax, *pdy, *pny);
PetscPrintf(PETSC_COMM_WORLD,"\t ZMAX %f \t DZ %f km \t NZ %i\n", *pzmax, *pdz, *pnz);
PetscPrintf(PETSC_COMM_WORLD,"\t MAX C \t %f km/s \n", cmax);
PetscPrintf(PETSC_COMM_WORLD,"\t MIN C \t %f km/s \n", cmin);
PetscPrintf(PETSC_COMM_WORLD,"\n");
PetscPrintf(PETSC_COMM_WORLD,"SOURCE:\n");
PetscPrintf(PETSC_COMM_WORLD,"\t ISRC %i \t JSRC %i \t KSRC %i\n", ctx.src.isrc, ctx.src.jsrc, ctx.src.ksrc);
PetscPrintf(PETSC_COMM_WORLD,"\t F0 \t %f Hz \n", ctx.src.f0);
PetscPrintf(PETSC_COMM_WORLD,"\t MIN Lambda \t %f km \n", lambda_min);
PetscPrintf(PETSC_COMM_WORLD,"\t POINTS PER WAvelENGTH \t %f \n", lambda_min/(*pdx));
PetscPrintf(PETSC_COMM_WORLD,"\n");
PetscPrintf(PETSC_COMM_WORLD,"RECEIVERS:\n");
PetscPrintf(PETSC_COMM_WORLD,"\t NREC \t %i\n", ctx.rec.nrec);
PetscPrintf(PETSC_COMM_WORLD,"\t IREC \t JREC \t KSREC \n");
// PRINT RECEIVER POSITIONS'
int rr;
for (rr = 0; rr < ctx.rec.nrec; rr++)
{
PetscPrintf(PETSC_COMM_WORLD,"\t %i \t %i \t %i \n", ctx.rec.irec[rr], ctx.rec.jrec[rr], ctx.rec.krec[rr]);
}
PetscPrintf(PETSC_COMM_WORLD,"\n");
PetscPrintf(PETSC_COMM_WORLD,"TIME STEPPING: \n");
PetscPrintf(PETSC_COMM_WORLD,"\t TMAX %f \t DT %f \t NT %i\n", *ptmax, *pdt, *pnt);
PetscPrintf(PETSC_COMM_WORLD,"\n");
PetscPrintf(PETSC_COMM_WORLD,"CFL CONDITION: \t %f \n", cmax * (*pdt)/(*pdx));
PetscPrintf(PETSC_COMM_WORLD,"\n");
VecGetSize(*pu, &tmp);
PetscPrintf(PETSC_COMM_WORLD,"MATRICES AND VECTORS: \n");
PetscPrintf(PETSC_COMM_WORLD,"\t Vec elements \t %i\n", tmp);
PetscPrintf(PETSC_COMM_WORLD,"\t Mat \t %i x %i x %i \n", *pnx, *pny, *pnz);
PetscPrintf(PETSC_COMM_WORLD,"\n");
/*
CREATE KSP, KRYLOV SUBSPACE OBJECTS
*/
KSP ksp_u;
// Create Krylov solver for u component
ierr = KSPCreate(comm, &ksp_u); CHKERRQ(ierr); // Create the KPS object
ierr = KSPSetDM(ksp_u, (DM) da); CHKERRQ(ierr); // Set the DM to be used as preconditioner
ierr = KSPSetComputeOperators(ksp_u, compute_A_u, &ctx); CHKERRQ(ierr); // Compute and assemble the coefficient matrix A
ierr = KSPSetFromOptions(ksp_u); CHKERRQ(ierr); // KSP options can be changed during the runtime
/*
TIME LOOP
*/
clock_t begin=clock();
clock_t end;
int it;
int shoot_time;
for (it = 1; it <= *pnt; it ++)
{
ctx.time.it = it;
ctx.time.t = (PetscScalar) (it-1) * ctx.time.dt;
ierr = KSPSetComputeRHS(ksp_u, update_b_u, &ctx); CHKERRQ(ierr); // new rhs for next iteration
ierr = KSPSolve(ksp_u, b, *pu); CHKERRQ(ierr); // Solve the linear system using KSP
ierr = Write_seismograms(ksp_u, *pu, &ctx); CHKERRQ(ierr); // Append value to the seismograms
ierr = VecCopy(*pum2, *pum3); CHKERRQ(ierr); // copy vector um2 to um3
ierr = VecCopy(*pum1, *pum2); CHKERRQ(ierr); // copy vector um1 to um2
ierr = VecCopy(*pu, *pum1); CHKERRQ(ierr); // copy vector u to um1
shoot_time = (int) it%IT_DISPLAY;
if (FOUTPUT && shoot_time == 0)
{
end = clock();
ierr = PetscPrintf(PETSC_COMM_WORLD, "Time step: \t %i of %i\n", ctx.time.it, ctx.time.nt); CHKERRQ(ierr);
ierr = VecMax(*pu, NULL, &cmax); CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD, "u max: \t %g \n", cmax); CHKERRQ(ierr);
ierr = VecMin(*pu, NULL, &cmin); CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD, "u min: \t %g \n", cmin); CHKERRQ(ierr);
ierr = VecNorm(*pu,NORM_2,&norm); CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD, "NORM: \t %g \n", norm); CHKERRQ(ierr);
double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
ierr = PetscPrintf(PETSC_COMM_WORLD, "Elapsed time: \t %f sec \n", time_spent); CHKERRQ(ierr);
if (SAVE_WAVEFIELD_MATLAB)
{
char buffer[64];
snprintf(buffer, sizeof(buffer), "./wavefields/tmp_Bvec_%i.m", it);
ierr = save_Vec_to_m_file(*pu, &buffer); CHKERRQ(ierr);
}
ierr = PetscPrintf(PETSC_COMM_WORLD, "\n"); CHKERRQ(ierr);
begin = clock();
}
}
ierr = Save_seismograms_to_txt_files(ksp_u, pctx); CHKERRQ(ierr); // Write seismograms into .txt files
/*
CLEAN ALLOCATIONS AND EXIT
*/
ierr = VecDestroy(&b); CHKERRQ(ierr);
ierr = VecDestroy(pu); CHKERRQ(ierr);
ierr = VecDestroy(pum1); CHKERRQ(ierr);
ierr = VecDestroy(pum2); CHKERRQ(ierr);
ierr = VecDestroy(pum3); CHKERRQ(ierr);
ierr = KSPDestroy(&ksp_u); CHKERRQ(ierr);
ierr = DMDestroy(&da); CHKERRQ(ierr);
// Print out total elapsed time
total_time_end = clock();
ierr = PetscPrintf(PETSC_COMM_WORLD, "\n Please check ./seism/ for seismograms\n"); CHKERRQ(ierr);
double time_spent = (double)(total_time_end - total_time_begin) / CLOCKS_PER_SEC;
ierr = PetscPrintf(PETSC_COMM_WORLD, "\n"); CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD, "Total time: \t %f sec \n", time_spent); CHKERRQ(ierr);
ierr = PetscFinalize(); CHKERRQ(ierr);
return 0;
}
// APPEND VALUE TO A SEISMOGRAM
PetscErrorCode
Write_seismograms(KSP ksp, Vec u ,void *ctx)
{
PetscFunctionBegin;
PetscErrorCode ierr;
PetscScalar ***_u;
ctx_t *c = (ctx_t *) ctx;
DM da;
ierr = KSPGetDM(ksp, &da); CHKERRQ(ierr); //Get the DM oject of the KSP
DMDALocalInfo grid;
ierr = DMDAGetLocalInfo(da, &grid); CHKERRQ(ierr); //Get the global information of the DM grid
ierr = DMDAVecGetArray(da, u, &_u); CHKERRQ(ierr);
PetscScalar t = c->time.t;
PetscInt it = c->time.it;
PetscInt nrec = c->rec.nrec;
PetscInt *irec = c->rec.irec;
PetscInt *jrec = c->rec.jrec;
PetscInt *krec = c->rec.krec;
int xrec;
for (xrec = 0; xrec < nrec; xrec++)
{
if ((irec[xrec] > grid.xs) && (irec[xrec] < (grid.xs + grid.xm)) &&
(jrec[xrec] > grid.ys) && (jrec[xrec] < (grid.ys + grid.ym)) &&
(krec[xrec] > grid.zs) && (krec[xrec] < (grid.zs + grid.zm)))
{
c->rec.seis[xrec][it-1][0] = t;
c->rec.seis[xrec][it-1][1] = _u[krec[xrec]][jrec[xrec]][irec[xrec]];
}
}
ierr = DMDAVecRestoreArray(da, u, &_u); CHKERRQ(ierr);
PetscFunctionReturn(0);
}
// SAVE VECTOR TO .m FILE
PetscErrorCode
save_Vec_to_m_file(Vec u, void * filename)
{
PetscFunctionBegin;
PetscErrorCode ierr;
char * filename2 = (char *) filename;
ierr = PetscPrintf(PETSC_COMM_WORLD, "File created: %s .m \n",filename2); CHKERRQ(ierr);
PetscViewer viewer;
PetscViewerASCIIOpen(PETSC_COMM_WORLD, filename2, &viewer);
PetscViewerPushFormat(viewer, PETSC_VIEWER_ASCII_MATLAB);
VecView(u, viewer);
PetscViewerPopFormat(viewer);
PetscViewerDestroy(&viewer);
PetscFunctionReturn(0);
}
// SOURCE TERM
PetscErrorCode
source_term(void * ctx)
{
PetscFunctionBegin;
PetscScalar f0, t, t0, a, source_term, factor;
PetscScalar force_x, force_y, force_z, angle_force;
ctx_t *c = (ctx_t *) ctx;
f0 = c->src.f0;
t0 = 1.2f / f0;
t = c->time.t;
factor = c->src.factor;
angle_force = c->src.angle_force;
//add the source (force vector located at a given grid point)
a = PI*PI*f0*f0;
//Gaussian
// source_term = factor * exp(-a * pow((t-t0),2));
//first derivative of a Gaussian
// source_term = - factor * 2.d0*a*(t-t0)*exp(-a*(t-t0)**2)
//Ricker source time function (second derivative of a Gaussian)
source_term = factor * (1.f - 2.f * a * pow(t-t0,2)) * exp(-a*pow(t-t0,2));
force_x = sin(angle_force * DEGREES_TO_RADIANS) * source_term;
force_y = cos(angle_force * DEGREES_TO_RADIANS) * source_term;
force_z = sin(angle_force * DEGREES_TO_RADIANS) * source_term;
c->src.fx = force_x;
c->src.fy = force_y;
c->src.fz = force_z;
PetscFunctionReturn(0);
}
// UPDATE RHS AT NEW TIME STEP
PetscErrorCode
update_b_u(KSP ksp, Vec b, void * ctx)
{
PetscFunctionBegin;
PetscErrorCode ierr;
PetscScalar dt2;
ctx_t *c = (ctx_t *) ctx;
source_term(c);
dt2 = pow(c->time.dt,2);
DM da;
ierr = KSPGetDM(ksp, &da); CHKERRQ(ierr); //Get the DM oject of the KSP
DMDALocalInfo grid;
ierr = DMDAGetLocalInfo(da, &grid); CHKERRQ(ierr); //Get the global information of the DM grid
PetscScalar hx = c->model.dx;
PetscScalar hy = c->model.dy;
PetscScalar hz = c->model.dz;
double *** _b;
double *** _um1, ***_um2, ***_um3;
ierr = DMDAVecGetArray(da, b, &_b); CHKERRQ(ierr);
ierr = DMDAVecGetArray(da, c->wf.um1, &_um1); CHKERRQ(ierr);
ierr = DMDAVecGetArray(da, c->wf.um2, &_um2); CHKERRQ(ierr);
ierr = DMDAVecGetArray(da, c->wf.um3, &_um3); CHKERRQ(ierr);
// Fill b
double f, source_term;
unsigned int k;
for(k = grid.zs; k < (grid.zs + grid.zm); k++) // Depth
{
unsigned int j;
for(j = grid.ys; j < (grid.ys + grid.ym); j++) // Columns
{
unsigned int i;
for(i = grid.xs; i < (grid.xs + grid.xm); i++) // Rows
{
// Nodes on the boundary layers
if((i == 0) || (i == (grid.mx - 1)) ||
(j == 0) || (j == (grid.my - 1)) ||
(k == 0) || (k == (grid.mz - 1)))
{
_b[k][j][i] = 0.f;
}
//Interior nodes
else
{
if ((i==c->src.isrc) && (j==c->src.jsrc) && (k==c->src.ksrc))
{
source_term = c->src.fx;
}
else
{
source_term = 0.f;
}
f = hx * hy * hz *
(5.f * _um1[k][j][i] - 4.f * _um2[k][j][i] + 1.f * _um3[k][j][i] + dt2 * source_term);
_b[k][j][i] = f;
}
}
}
}
ierr = DMDAVecRestoreArray(da, b, &_b); CHKERRQ(ierr); // Release the resource
ierr = DMDAVecRestoreArray(da, c->wf.um1, &_um1); CHKERRQ(ierr); // Release the resource
ierr = DMDAVecRestoreArray(da, c->wf.um2, &_um2); CHKERRQ(ierr); // Release the resource
ierr = DMDAVecRestoreArray(da, c->wf.um3, &_um3); CHKERRQ(ierr); // Release the resource
// FIX NULLSPACE-CAUSED PROBLEMS
MatNullSpace nullspace;
MatNullSpaceCreate(PETSC_COMM_WORLD,PETSC_TRUE,0,0,&nullspace);
MatNullSpaceRemove(nullspace,b);
MatNullSpaceDestroy(&nullspace);
PetscFunctionReturn(0);
}
// BUILD MATRIX A
PetscErrorCode
compute_A_u(KSP ksp, Mat A, Mat J, void * ctx)
{
PetscFunctionBegin;
PetscErrorCode ierr;
PetscScalar v[13], hx, hy, hz, hyhzdhx, hxhzdhy, hxhydhz;
PetscScalar dt, dt2;
PetscScalar vel, vel2;
PetscInt n;
DM da;
DMDALocalInfo grid;
MatStencil idxm; //A PETSc data structure to store information about a single row or column in the stencil
MatStencil idxn[13];
ctx_t *c = (ctx_t *) ctx;
ierr = KSPGetDM(ksp, &da); CHKERRQ(ierr); // Get the DMDA object
ierr = DMDAGetLocalInfo(da, &grid); CHKERRQ(ierr); // Get the grid information
vel = c->model.vel;
vel2 = pow(vel, 2);
dt = c->time.dt;
dt2 = dt * dt;
hx = c->model.dx;
hy = c->model.dy;
hz = c->model.dz;
hyhzdhx = hy * hz / (12.f * hx);
hxhzdhy = hx * hz / (12.f * hy);
hxhydhz = hx * hy / (12.f * hz);
/* Loop over the grid points */
unsigned int k;
for(k = grid.zs; k < (grid.zs + grid.zm); k++) // Depth
{
unsigned int j;
for(j = grid.ys; j < (grid.ys + grid.ym); j++) // Columns
{
unsigned int i;
for(i = grid.xs; i < (grid.xs + grid.xm); i++) // Rows
{
n = 1;
idxm.k = k;
idxm.j = j;
idxm.i = i;
idxn[0].k = k;
idxn[0].j = j;
idxn[0].i = i;
// Nodes on the boundary layers
if((i == 0) || (i == (grid.mx - 1)) ||
(j == 0) || (j == (grid.my - 1)) ||
(k == 0) || (k == (grid.mz - 1)))
{
v[0]=1.f;
}
// Interior nodes
else
{
v[0] = 30.f * vel2 * dt2 * (hyhzdhx + hxhzdhy + hxhydhz);
// If neighbor is not a known boundary value
// then we put an entry
if((i - 2) > 0)
{
idxn[n].j = j; // Get the column indices
idxn[n].i = i - 2;
idxn[n].k = k;
v[n] = vel2 * dt2 * hyhzdhx; // Fill with the value
n++; // One column added
idxn[n].j = j;
idxn[n].i = i - 1;
idxn[n].k = k;
v[n] = - 16.f * vel2 * dt2 * hyhzdhx;
n++;
}
if((i + 2) < (grid.mx - 1))
{
idxn[n].j = j;
idxn[n].i = i + 2;
idxn[n].k = k;
v[n] = vel2 * dt2 * hyhzdhx;
n++;
idxn[n].j = j;
idxn[n].i = i + 1;
idxn[n].k = k;
v[n] = - 16.f * vel2 * dt2 * hyhzdhx;
n++;
}
if((j - 2) > 0)
{
idxn[n].j = j - 2;
idxn[n].i = i;
idxn[n].k = k;
v[n] = vel2 * dt2 * hxhzdhy;
n++;
idxn[n].j = j - 1;
idxn[n].i = i;
idxn[n].k = k;
v[n] = - 16.f * vel2 * dt2 * hxhzdhy;
n++;
}
if((j + 2) < (grid.my - 1))
{
idxn[n].j = j + 2;
idxn[n].i = i;
idxn[n].k = k;
v[n] = vel2 * dt2 * hxhzdhy;
n++;
idxn[n].j = j + 1;
idxn[n].i = i;
idxn[n].k = k;
v[n] = - 16.f * vel2 * dt2 * hxhzdhy;
n++;
}
if((k - 2) > 0)
{
idxn[n].j = j;
idxn[n].i = i;
idxn[n].k = k - 2;
v[n] = vel2 * dt2 * hxhydhz;
n++;
idxn[n].j = j;
idxn[n].i = i;
idxn[n].k = k - 1;
v[n] = - 16.f * vel2 * dt2 * hxhydhz;
n++;
}
if((k + 2) < (grid.mz - 1))
{
idxn[n].j = j;
idxn[n].i = i;
idxn[n].k = k + 2;
v[n] = vel2 * dt2 * hxhydhz;
n++;
idxn[n].j = j;
idxn[n].i = i;
idxn[n].k = k + 1;
v[n] = - 16.f * vel2 * dt2 * hxhydhz;
n++;
}
v[0]+= 2.f * hx * hy * hz;
}
// Insert one row of the matrix A
ierr = MatSetValuesStencil(A, 1, (const MatStencil *) &idxm,
(PetscInt) n, (const MatStencil *) &idxn,
(PetscScalar *) v, INSERT_VALUES); CHKERRQ(ierr);
}
}
}
/* Assemble the matrix */
ierr = MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
ierr = MatAssemblyEnd(A ,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
PetscFunctionReturn(0);
}
// This function allocates memory for a 3D array. The function is taken from SOFI3D_acoustic
//https://git.scc.kit.edu/GPIAG-Software/SOFI3D/tree/0ca72edf3ef977813372dd26ccfeaf4c19361a69
PetscScalar ***f3tensor(PetscInt nrl, PetscInt nrh, PetscInt ncl, PetscInt nch,PetscInt ndl, PetscInt ndh)
{
PetscFunctionBegin;
/* allocate a float 3tensor with subscript range m[nrl..nrh][ncl..nch][ndl..ndh]
and intializing the matrix, e.g. m[nrl..nrh][ncl..nch][ndl..ndh]=0.0 */
PetscInt i,j,d, nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1, NR_END=1;
PetscScalar ***t;
/* allocate pointers to pointers to rows */
t=(PetscScalar ***) malloc((size_t) ((nrow+NR_END)*sizeof(PetscScalar**)));
// if (!t) err("allocation failure 1 in function f3tensor() ");
t += NR_END;
t -= nrl;
/* allocate pointers to rows and set pointers to them */
t[nrl]=(PetscScalar **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(PetscScalar*)));
// if (!t[nrl]) err("allocation failure 2 in function f3tensor() ");
t[nrl] += NR_END;
t[nrl] -= ncl;
/* allocate rows and set pointers to them */
t[nrl][ncl]=(PetscScalar *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(PetscScalar)));
t[nrl][ncl] += NR_END;
t[nrl][ncl] -= ndl;
for (j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
for (i=nrl+1;i<=nrh;i++){
t[i]=t[i-1]+ncol;
t[i][ncl]=t[i-1][ncl]+ncol*ndep;
for (j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
}
/* initializing 3tensor */
for (i=nrl;i<=nrh;i++)
for (j=ncl;j<=nch;j++)
for (d=ndl;d<=ndh;d++) t[i][j][d]=0.0;
/* return pointer to array of pointer to rows */
PetscFunctionReturn(t);
}
// WRITE DOWN FILES WITH SEISMOGRAMS
PetscErrorCode
Save_seismograms_to_txt_files(KSP ksp, void *ctx)
{
PetscFunctionBegin;
PetscErrorCode ierr;
ctx_t *c = (ctx_t *) ctx;
PetscInt nrec = c->rec.nrec;
PetscInt nt = c->time.nt;
PetscInt *irec = c->rec.irec;
PetscInt *jrec = c->rec.jrec;
PetscInt *krec = c->rec.krec;
DM da;
ierr = KSPGetDM(ksp, &da); CHKERRQ(ierr); //Get the DM oject of the KSP
DMDALocalInfo grid;
ierr = DMDAGetLocalInfo(da, &grid); CHKERRQ(ierr); //Get the global information of the DM grid
int xrec;
for (xrec = 0; xrec < nrec; xrec++)
{
if ((irec[xrec] > grid.xs) && (irec[xrec] < (grid.xs + grid.xm)) &&
(jrec[xrec] > grid.ys) && (jrec[xrec] < (grid.ys + grid.ym)) &&
(krec[xrec] > grid.zs) && (krec[xrec] < (grid.zs + grid.zm)))
{
char buffer[64];
snprintf(buffer, sizeof(buffer), "./seism/seis_%i_%i_%i_%i_%i_%i.txt",
xrec, c->rec.irec[xrec], c->rec.jrec[xrec], c->rec.krec[xrec], (int) c->src.f0, (int) c-> model.xmax);
FILE *fout = fopen(buffer, "wb");
int i;
for (i = 0; i < nt ; i++)
{
fprintf(fout, "%f \t %f \n", c->rec.seis[xrec][i][0], c->rec.seis[xrec][i][1]);
}
fclose(fout);
}
}
PetscFunctionReturn(0);
}