Skip to content

ovguyo/captions-in-VQA

Repository files navigation

Enhancing Visual Question Answering through Question-Driven Image Captions as Prompts

Work in Progress.

Introduction

This is the official code for the paper "Enhancing Visual Question Answering through Question-Driven Image Captions as Prompts". The code evaluates the effect of using image captions with LLMs for zero-shot Visual Question Answering (VQA).

Directory Structure

  • /predictions: This directory contains the predictions generated by GPT-3.5 QA, CogVLM and BLIP-2 VQA models.
  • /captions: This directory contains the image caption generated by several approaches.
cd captions-in-VQA
pip install -r requirements.txt

Create image captions

The following script creates question-driven captions using KeyBERT(https://github.com/MaartenGr/KeyBERT) and CogVLM (https://github.com/THUDM/CogVLM). You should install the requirements for these two packages before running the script. The script is a modified version of https://github.com/THUDM/CogVLM/blob/main/basic_demo/cli_demo_hf.py

python write_qd_captions.py --from_pretrained THUDM/cogvlm-chat-hf --bf16 --quant 4 --image-path path-to-images --question-path path-to-questions

Generate answers through GPT-3.5 using image captions

Modify the OPENAI_API_KEY in the script before running.

# generate answers using question-driven captions
python qa.py --caption-file captions/cogvlm_chat_qd_descriptions.json --question-file path-to-questions

Evaluate VQA predictions

# evaluate question-driven image captioning in VQA
python evaluation.py --prediction-file predictions/cogvlmqd_cap_gpt35.json --question-file path-to-questions

Zero-shot Evaluation Results

We evaluate several VQA approaches on GQA testdev-balanced accross various question types.

Question types CogVLM-C Cap. + GPT-3.5 CogVLM-V Cap. + GPT-3.5 CogVLM QD Cap. + GPT-3.5 CogVLM SB Cap. + GPT-3.5 FuseCap + GPT-3.5 BLIP-2 Cap. + GPT-3.5
verify 63.01 58.53 66.83 61.06 53.60 55.82
query 36.91 31.08 38.34 31.51 29.61 31.87
choose 65.25 60.90 65.51 60.90 58.07 60.82
logical 59.51 60.29 59.07 58.46 57.07 56.07
compare 51.78 51.95 51.95 49.07 54.50 48.22
object 61.95 63.24 59.13 58.87 59.38 58.35
attribute 51.75 46.42 54.62 50.80 45.11 46.63
category 47.35 44.21 50.39 42.56 43.52 42.47
relation 42.56 38.32 42.97 35.76 34.98 37.23
global 49.04 45.86 45.86 44.59 43.95 45.22
TOTAL 48.06 43.83 49.50 44.12 41.58 42.99

About

Using image captions with LLM for zero-shot VQA

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages