-
Notifications
You must be signed in to change notification settings - Fork 3
/
fundamental.rkt
371 lines (298 loc) · 13.2 KB
/
fundamental.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#lang racket
(require racket/stream
racket/generator)
(provide (all-defined-out))
;;;
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (expression? x)
(or (number? x) (variable? x) (pair? x)))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (get-op exp) (car exp))
(define (get-arg-lst exp) (cdr exp))
(define (get-arg exp) (cadr exp))
;;;
;If there's only one argument
;(define (function-chain f g) (lambda (x) (f (g x))))
(define (function-chain f-lst)
(if (null? (cdr f-lst))
(lambda (x) ((car f-lst) x))
(lambda (x) ((car f-lst) ((function-chain (cdr f-lst)) x)))))
;((function-chain (list sin cos)) 1) ;0.5143952585235492
(define (and-lst lsts)
(define (and-lst-recur lsts)
(cond ((null? lsts) true)
((eq? (car lsts) true) (and-lst-recur (cdr lsts)))
((eq? (car lsts) false) false)))
(and-lst-recur lsts))
;(and-lst (list true true))
;(and-lst (list true false))
;;;
(define (symbol=? x y) (string=? (symbol->string x) (symbol->string y)))
(define (symbol<? x y) (string<? (symbol->string x) (symbol->string y)))
(define (symbol<=? x y) (string<=? (symbol->string x) (symbol->string y)))
(define (symbol>? x y) (string>? (symbol->string x) (symbol->string y)))
(define (symbol>=? x y) (string>=? (symbol->string x) (symbol->string y)))
(define (expression<? x y)
(cond ((and (null? x) (null? y)) false)
((and (number? x) (number? y)) (< x y))
((number? x) true)
((number? y) false)
((and (symbol? x) (symbol? y)) (symbol<? x y))
((symbol? x) true)
((symbol? y) false)
((and (pair? x) (pair? y))
(cond ((expression<? (car x) (car y)) true)
((expression>? (car x) (car y)) false)
(else (expression<? (cdr x) (cdr y)))))
(else ("Not an expression" x y))))
(define (expression>? x y)
(cond ((and (null? x) (null? y)) false)
((and (number? x) (number? y)) (> x y))
((number? x) false)
((number? y) true)
((and (symbol? x) (symbol? y)) (symbol>? x y))
((symbol? x) false)
((symbol? y) true)
((and (pair? x) (pair? y))
(cond ((expression>? (car x) (car y)) true)
((expression<? (car x) (car y)) false)
(else (expression>? (cdr x) (cdr y)))))
(else ("Not an expression" x y))))
;(expression<? 1 3) ;#t
;(expression<? 1 '(+ a b)) ;#t
;(expression<? '(+ c d) '(+ a b)) ;#f
;(expression<? '(+ a b) '(+ c d)) ;#t
;(expression>? '(+ c d) '(+ a b)) ;#t
;(expression>? '(+ a b) '(+ c d)) ;#f
;(sort '((+ x y) 2 3 (+ 3 x) 2 (* x 5) (* x y)) expression<?) ;'(2 2 3 (* x 5) (* x y) (+ 3 x) (+ x y))
;(sort '((+ x y) 2 3 (+ 3 x) 2 (* x 5) (* x y)) expression>?) ;'((+ x y) (+ 3 x) (* x y) (* x 5) 3 2 2)
;;;
;It is not the same as the Racket "reverse", as it has two arguments.
(define (list-reverse torev-seq done-seq)
(if (eq? torev-seq '())
done-seq
(list-reverse (cdr torev-seq) (cons (car torev-seq) done-seq))))
;To be consistent with "list-ref" in Racket, The first element has index 0.
(define (list-delete lst pos)
(cond ((null? lst) (error "Index out of range"))
((= 0 pos) (cdr lst))
(else (cons (car lst) (list-delete (cdr lst) (- pos 1))))))
;(list-delete '(a b c d) 2) ;'(a b d)
;(list-delete '(a b c d) 5) ;Index out of range
;It works exactly the same as the function "take" while (require racket/list).
(define (list-take lst pos)
(define (list-flip new-lst old-lst count)
(cond ((= 0 count) new-lst)
((null? old-lst) (error "Position doesn't exist in list" pos lst))
(else (list-flip (cons (car old-lst) new-lst) (cdr old-lst) (- count 1)))))
(reverse (list-flip '() lst pos)))
;(list-take '(1 2 3 4) 3) ;'(1 2 3)
;(list-take '(1 2 3 4) 6) ;error
(define (list-remove ele lst)
(define (list-flip new-lst old-lst)
(cond ((null? old-lst) false)
((eq? ele (car old-lst)) (list-reverse new-lst (cdr old-lst)))
(else (list-flip (cons (car old-lst) new-lst) (cdr old-lst)))))
(list-flip '() lst))
;(list-remove 2 '(1 2 3 4)) ;'(1 3 4)
;(list-remove 2 '(1 2 3 2 4)) ;'(1 3 2 4)
;(list-remove 5 '(1 2 3 4)) ;#f
(define (list-intersect lsts)
(set->list (apply set-intersect (map list->set lsts))))
;(list-intersect '((x y 1) (y 2 x) (x 2 3))) ;'(x)
;(list-intersect '((x y 1 x) (y 2 x x) (x 2 3 x))) ;'(x) ;It currently doesn't count duplicate element.
(define (list-mixed-up lst ele)
(cond ((null? lst) '())
((null? (cdr lst)) lst)
(else (cons (car lst) (cons ele (list-mixed-up (cdr lst) ele))))))
;(list-mixed-up '(x y z w) 'a) ;'(x a y a z a w)
(define (members v-lst lst)
(define (members-iter v-lst lst)
(if (null? v-lst)
true
(if (member (car v-lst) lst)
(members-iter (cdr v-lst) lst)
false)))
(members-iter v-lst lst))
;(members '(1 2 3) '(2 3 1 4 5)) ;#t
;(members '(1 2 3) '(2 3 4 5 6)) ;#f
(define (removes v-lst lst)
(define (removes-iter v-lst lst)
(if (null? v-lst)
lst
(removes-iter (cdr v-lst) (remove (car v-lst) lst))))
(removes-iter v-lst lst))
;(removes '(1 3 5) '(3 4 5 1 2)) ;'(4 2)
;(removes '(1 3 5) '(3 4 5 1 2 1)) ;'(4 2 1)
(define (index element lst) ;The first element has index 0
(define (index-iter element lst passed-index)
(cond ((null? lst) false) ;(error "Not find in list -- INDEX" element lst))
((equal? (car lst) element) passed-index)
(else (index-iter element (cdr lst) (+ passed-index 1)))))
(index-iter element lst 0))
;(index 5 (list 1 3 5 7)) ;2
;(index 0 (list 1 3 5 7)) ;#f
;(index '(x y) '(w z (x y) 1 2)) ;2 ;It also works for complicated case.
(define (index-in element nested-lst)
(define (index-in-iter nested-lst passed-index)
(cond ((null? nested-lst) false)
((not (eq? (index element (car nested-lst)) false)) passed-index)
(else (index-in-iter (cdr nested-lst) (+ passed-index 1)))))
(index-in-iter nested-lst 0))
;(index-in 'c '((a b) (c d) (e f))) ;1
;(index-in 'g '((a b) (c d) (e f))) ;#f
(define (element-combination lsts)
(cond ((null? lsts) '())
((null? (cdr lsts)) (map list (car lsts)))
(else (apply append (map (lambda (x) (map (lambda (y) (cons y x)) (car lsts))) (element-combination (cdr lsts)))))))
;(element-combination '((a b c))) ;'((a) (b) (c))
;(element-combination '((a b) (d e))) ;'((a d) (b d) (a e) (b e))
;(element-combination '((a b) (d e) (f g))) ;'((a d f) (b d f) (a e f) (b e f) (a d g) (b d g) (a e g) (b e g))
(define (counter lst)
(define counter-hash (make-hash))
(define (put-to-hash ele)
(if (hash-has-key? counter-hash ele)
(hash-set! counter-hash ele (+ (hash-ref counter-hash ele) 1))
(hash-set! counter-hash ele 1)))
(begin
(map put-to-hash lst)
counter-hash))
;(counter '(a a b a c a d d b e)) ;'#hash((a . 4) (d . 2) (c . 1) (e . 1) (b . 2))
;(counter '((+ a b) (+ c d) (+ 1 2) (+ a b) c)) ;'#hash(((+ c d) . 1) ((+ 1 2) . 1) (c . 1) ((+ a b) . 2))
(define (stream-take n s)
(if (= n 0)
'()
(cons (stream-first s) (stream-take (- n 1) (stream-rest s)))))
(define (stream-next strm)
(generator ()
(let loop ([x strm])
(if (null? x)
0
(begin
(yield (stream-first x))
(loop (stream-rest x)))))))
;(define (map-n dim prop lst)
; (if (= dim 1)
; (map prop lst)
; (map (lambda (lst) (map-n (- dim 1) prop lst)) lst)))
;In the above form, "prop" can only have one argument.
;In the bottom form, arbitrary number of arguments are okay.
(define (map-n dim prop . lst)
(if (= dim 1)
(apply map (cons prop lst))
(apply map (cons (lambda lst (apply map-n (append (list (- dim 1) prop) lst))) lst))))
;(define fx (lambda (x) (+ 2 x)))
;(map-n 1 fx (list 1 2)) ;'(3 4)
;(map-n 1 + (list 3 4) (list 1 2)) ;'(4 6)
;(map-n 2 fx (list (list 1 2) (list 3 4))) ;'((3 4) (5 6))
;(map-n 2 + (list (list 1 2) (list 3 4)) (list (list 5 6) (list 7 8))) ;'((6 8) (10 12))
(define (exp-replace exp to-replace-lst replace-lst)
(cond ((member exp to-replace-lst) (list-ref replace-lst (index exp to-replace-lst)))
((or (number? exp) (variable? exp)) exp)
(else (map (lambda (x) (exp-replace x to-replace-lst replace-lst)) exp))))
;(exp-replace '(+ 2 (* x y) (* y (+ z (* x y))) z (* x y)) '((* x y)) '(w)) ;'(+ 2 w (* y (+ z w)) z w)
(define (accumulate op initial sequence)
(if (null? sequence)
initial
(op (car sequence)
(accumulate op initial (cdr sequence)))))
(define (accumulate-n op init seqs)
(if (null? (car seqs))
'()
(cons (accumulate op init (accumulate (lambda (x y) (cons (car x) y)) '() seqs))
(accumulate-n op init (accumulate (lambda (x y) (cons (cdr x) y)) '() seqs)))))
(define (gather-num op-for-num unit-num sequence)
(define (gather-num-recur sequence)
(if (null? sequence)
(list unit-num)
(let ([sequence-after (gather-num-recur (cdr sequence))])
(if (number? (car sequence))
(cons (op-for-num (car sequence) (car sequence-after)) (cdr sequence-after))
(cons (car sequence-after) (cons (car sequence) (cdr sequence-after)))))))
(gather-num-recur (sort sequence expression<?)))
;(gather-num + 0 (list 1 'a 2 'd 3 'c 'b)) ;'(6 a b c d)
;;;
;A function can have only one argument. It is fine for equation of motion
;(which has only a "t"), but not enough for other proposes.
(define (make-function f x) (list 'function f x))
(define (function? exp) (and (pair? exp) (eq? (get-op exp) 'function)))
(define (get-function-kernal exp) (cadr exp))
(define (get-function-arg exp) (caddr exp))
(define (make-deriv exp var) (list 'deriv exp var))
(define (deriv? exp) (and (pair? exp) (eq? (get-op exp) 'deriv)))
(define (get-deriv-kernel exp) (cadr exp))
(define (get-deriv-arg exp) (caddr exp))
;;;
(define (merge-same-op is-op? args)
(define (merge-same-op-recur args)
(cond ((null? args) '())
((is-op? (car args)) (append (get-arg-lst (car args)) (merge-same-op-recur (cdr args))))
(else (cons (car args) (merge-same-op-recur (cdr args))))))
(merge-same-op-recur args))
(define (make-op op-func op-symb unit-num args)
(let ([gathered-seq (gather-num op-func unit-num args)])
(cond ((null? (cdr gathered-seq)) (car gathered-seq))
((and (= (car gathered-seq) unit-num) (null? (cddr gathered-seq)))
(cadr gathered-seq))
((= (car gathered-seq) unit-num) (cons op-symb (cdr gathered-seq)))
(else (cons op-symb gathered-seq)))))
(define (sum? x) (and (pair? x) (eq? (get-op x) '+)))
(define (make-sum args) (make-op + '+ 0 (merge-same-op sum? args)))
;(merge-same-op sum? '(1 2 (+ 3 4) (* 5 6))) ;'(1 2 3 4 (* 5 6))
;(make-sum '(a (+ 1 c) b 3 (* 2 b))) ;'(+ 4 a b c (* 2 b))
;(make-sum '(2 3 (grassmannian . x) x (grassmannian . z) 4)) ;It also works with elements which has tags.
(define (product? x) (and (pair? x) (eq? (get-op x) '*)))
(define (make-product args)
(let ([result (make-op * '* 1 (merge-same-op product? args))])
(cond ((number? result) result)
((symbol? result) result)
((eq? (cadr result) '0) 0)
(else result))))
;(make-product '(1 a (* 2 f e) b 4 c (+ 4 d))) ;'(* 8 a b c e f (+ 4 d))
;(make-product (list '(+ a b c))) ;'(+ a b c)
(define (exponentiation? x) (and (pair? x) (eq? (get-op x) '**)))
(define (base p) (cadr p))
(define (exponent p) (caddr p))
(define (make-exponentiation x n)
(cond ((=number? n 0) 1)
((=number? n 1) x)
((and (number? x) (number? n)) (expt x n))
((exponentiation? x)
(make-exponentiation (base x) (make-product (list (exponent x) n))))
((product? x) (make-product (map (lambda (base) (make-exponentiation base n)) (get-arg-lst x))))
(else (list '** x n))))
;(make-exponentiation '(* x y z) 'n) ;'(* (** x n) (** y n) (** z n))
(define (make-abs x) (if (number? x) (abs x) (list 'abs x)))
(define (make-log x) (if (number? x) (log x) (list 'log x)))
(define (make-sin x) (if (number? x) (sin x) (list 'sin x)))
(define (make-cos x) (if (number? x) (cos x) (list 'cos x)))
(define (abs? x) (and (pair? x) (eq? (get-op x) 'abs)))
(define (log? x) (and (pair? x) (eq? (get-op x) 'log)))
(define (sin? x) (and (pair? x) (eq? (get-op x) 'sin)))
(define (cos? x) (and (pair? x) (eq? (get-op x) 'cos)))
;(make-abs -3) ;3
;(make-abs '(+ a b)) ;'(abs (+ a b))
(define (sign n)
(if (number? n)
(if (even? n) 1 -1)
(make-exponentiation -1 n)))
;The simplification of elementary arithmetic is really hard to write ...
;Need to think carefully for a more organized way to do that ...
(define (make-eqn LHS RHS) (list '= LHS RHS))
(define (eqn? exp) (and (pair? exp) (eq? (get-op exp) '=)))
(define (eqn-LHS exp) (cadr exp))
(define (eqn-RHS exp) (caddr exp))
;;;
(define (map-derivation proc op arg-lst)
(define (map-derivation-iter prop arg-lst passed-arg-lst)
(if (null? arg-lst)
'()
(cons
(list-reverse passed-arg-lst (cons (prop (car arg-lst)) (cdr arg-lst)))
(map-derivation-iter prop (cdr arg-lst) (cons (car arg-lst) passed-arg-lst)))))
(make-sum (map op
(map-derivation-iter proc arg-lst '()))))
;(map-derivation (lambda (x) (+ x 2)) (lambda (x) (cons '~ x)) '(1 2 3)) ;'(+ (~ 3 2 3) (~ 1 4 3) (~ 1 2 5))