forked from pixegami/rag-tutorial-v2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
query_data.py
53 lines (37 loc) · 1.46 KB
/
query_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import argparse
from langchain.vectorstores.chroma import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain_community.llms.ollama import Ollama
from get_embedding_function import get_embedding_function
CHROMA_PATH = "chroma"
PROMPT_TEMPLATE = """
Answer the question based only on the following context:
{context}
---
Answer the question based on the above context: {question}
"""
def main():
# Create CLI.
parser = argparse.ArgumentParser()
parser.add_argument("query_text", type=str, help="The query text.")
args = parser.parse_args()
query_text = args.query_text
query_rag(query_text)
def query_rag(query_text: str):
# Prepare the DB.
embedding_function = get_embedding_function()
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
# Search the DB.
results = db.similarity_search_with_score(query_text, k=5)
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query_text)
# print(prompt)
model = Ollama(model="mistral")
response_text = model.invoke(prompt)
sources = [doc.metadata.get("id", None) for doc, _score in results]
formatted_response = f"Response: {response_text}\nSources: {sources}"
print(formatted_response)
return response_text
if __name__ == "__main__":
main()