-
Notifications
You must be signed in to change notification settings - Fork 12
/
reaper.cl
executable file
·395 lines (347 loc) · 13 KB
/
reaper.cl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
typedef uchar u8;
typedef ushort u16;
typedef uint u32;
typedef ulong u64;
//u8 that might be uchar or uchar2 depending on the kernel
typedef uchar u8_v;
#define U8TO32(p) \
(((u32)((p)[0]) << 24) | ((u32)((p)[1]) << 16) | \
((u32)((p)[2]) << 8) | ((u32)((p)[3]) ))
#define U8TO64(p) \
(((u64)U8TO32(p) << 32) | (u64)U8TO32((p) + 4))
#define U32TO8(p, v) \
(p)[0] = (u8)((v) >> 24); (p)[1] = (u8)((v) >> 16); \
(p)[2] = (u8)((v) >> 8); (p)[3] = (u8)((v) );
#define U64TO8(p, v) \
U32TO8((p), (u32)((v) >> 32)); \
U32TO8((p) + 4, (u32)((v) ));
#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
__constant u8 sigma[256] =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 ,
14,10, 4, 8, 9,15,13, 6, 1,12, 0, 2,11, 7, 5, 3 ,
11, 8,12, 0, 5, 2,15,13,10,14, 3, 6, 7, 1, 9, 4 ,
7, 9, 3, 1,13,12,11,14, 2, 6, 5,10, 4, 0,15, 8 ,
9, 0, 5, 7, 2, 4,10,15,14, 1,11,12, 6, 8, 3,13 ,
2,12, 6,10, 0,11, 8, 3, 4,13, 7, 5,15,14, 1, 9 ,
12, 5, 1,15,14,13, 4,10, 0, 7, 6, 3, 9, 2, 8,11 ,
13,11, 7,14,12, 1, 3, 9, 5, 0,15, 4, 8, 6, 2,10 ,
6,15,14, 9,11, 3, 0, 8,12, 2,13, 7, 1, 4,10, 5 ,
10, 2, 8, 4, 7, 6, 1, 5,15,11, 9,14, 3,12,13 ,0 ,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 ,
14,10, 4, 8, 9,15,13, 6, 1,12, 0, 2,11, 7, 5, 3 ,
11, 8,12, 0, 5, 2,15,13,10,14, 3, 6, 7, 1, 9, 4 ,
7, 9, 3, 1,13,12,11,14, 2, 6, 5,10, 4, 0,15, 8 ,
9, 0, 5, 7, 2, 4,10,15,14, 1,11,12, 6, 8, 3,13 ,
2,12, 6,10, 0,11, 8, 3, 4,13, 7, 5,15,14, 1, 9
};
__constant u64 cst[16] =
{
0x243F6A8885A308D3UL,0x13198A2E03707344UL,0xA4093822299F31D0UL,0x082EFA98EC4E6C89UL,
0x452821E638D01377UL,0xBE5466CF34E90C6CUL,0xC0AC29B7C97C50DDUL,0x3F84D5B5B5470917UL,
0x9216D5D98979FB1BUL,0xD1310BA698DFB5ACUL,0x2FFD72DBD01ADFB7UL,0xB8E1AFED6A267E96UL,
0xBA7C9045F12C7F99UL,0x24A19947B3916CF7UL,0x0801F2E2858EFC16UL,0x636920D871574E69UL
};
__constant u32 K[64] =
{
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
uint rotl(uint x, uint y)
{
return (x<<y)|(x>>(32-y));
}
//#define Ch(x, y, z) bitselect(z,y,x)
//#define Ma(x, y, z) bitselect(z,y,x^z)
#define Ch(x, y, z) (z^(x&(y^z)))
#define Ma(x, y, z) (z^((x^z)&(y^z)))
#define Tr(x,a,b,c) (rotl(x,a)^rotl(x,b)^rotl(x,c))
#define Wr(x,a,b,c) (rotl(x,a)^rotl(x,b)^(x>>c))
#define R(x) (work[x] = Wr(work[x-2],15,13,10) + work[x-7] + Wr(work[x-15],25,14,3) + work[x-16])
#define sharound(a,b,c,d,e,f,g,h,x,K) h+=Tr(e,7,21,26)+Ch(e,f,g)+K+x; d+=h; h+=Tr(a,10,19,30)+Ma(a,b,c);
#define sharound_s(a,b,c,d,e,f,g,h,x) h+=Tr(e,7,21,26)+Ch(e,f,g)+x; d+=h; h+=Tr(a,10,19,30)+Ma(a,b,c);
u32 EndianSwap(u32 n)
{
return ((n&0xFF)<<24) | ((n&0xFF00)<<8) | ((n&0xFF0000)>>8) | ((n&0xFF000000)>>24);
}
void Sha256_round(u32* s, u8_v* data)
{
u32 work[64];
u32* udata = (u32*)data;
for(u32 i=0; i<16; ++i)
{
work[i] = EndianSwap(udata[i]);
}
u32 A = s[0];
u32 B = s[1];
u32 C = s[2];
u32 D = s[3];
u32 E = s[4];
u32 F = s[5];
u32 G = s[6];
u32 H = s[7];
#pragma unroll
for(u32 i=0; i<16; i+=8)
{
sharound(A,B,C,D,E,F,G,H,work[i+0],K[i+0]);
sharound(H,A,B,C,D,E,F,G,work[i+1],K[i+1]);
sharound(G,H,A,B,C,D,E,F,work[i+2],K[i+2]);
sharound(F,G,H,A,B,C,D,E,work[i+3],K[i+3]);
sharound(E,F,G,H,A,B,C,D,work[i+4],K[i+4]);
sharound(D,E,F,G,H,A,B,C,work[i+5],K[i+5]);
sharound(C,D,E,F,G,H,A,B,work[i+6],K[i+6]);
sharound(B,C,D,E,F,G,H,A,work[i+7],K[i+7]);
}
#pragma unroll
for(u32 i=16; i<64; i+=8)
{
sharound(A,B,C,D,E,F,G,H,R(i+0),K[i+0]);
sharound(H,A,B,C,D,E,F,G,R(i+1),K[i+1]);
sharound(G,H,A,B,C,D,E,F,R(i+2),K[i+2]);
sharound(F,G,H,A,B,C,D,E,R(i+3),K[i+3]);
sharound(E,F,G,H,A,B,C,D,R(i+4),K[i+4]);
sharound(D,E,F,G,H,A,B,C,R(i+5),K[i+5]);
sharound(C,D,E,F,G,H,A,B,R(i+6),K[i+6]);
sharound(B,C,D,E,F,G,H,A,R(i+7),K[i+7]);
}
s[0] += A;
s[1] += B;
s[2] += C;
s[3] += D;
s[4] += E;
s[5] += F;
s[6] += G;
s[7] += H;
}
__constant u32 P[61] =
{
0xc28a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19c0174,
0x649b69c1, 0xf9be478a, 0x0fe1edc6, 0x240ca60c, 0x4fe9346f, 0x4d1c84ab, 0x61b94f1e, 0xf6f993db,
0xe8465162, 0xad13066f, 0xb0214c0d, 0x695a0283, 0xa0323379, 0x2bd376e9, 0xe1d0537c, 0x03a244a0,
0xfc13a4a5, 0xfafda43e, 0x56bea8bb, 0x445ec9b6, 0x39907315, 0x8c0d4e9f, 0xc832dccc, 0xdaffb65b,
0x1fed4f61, 0x2f646808, 0x1ff32294, 0x2634ccd7, 0xb0ebdefa, 0xd6fc592b, 0xa63c5c8f, 0xbe9fbab9,
0x0158082c, 0x68969712, 0x51e1d7e1, 0x5cf12d0d, 0xc4be2155, 0x7d7c8a34, 0x611f2c60, 0x036324af,
0xa4f08d87, 0x9e3e8435, 0x2c6dae30, 0x11921afc, 0xb76d720e
};
void Sha256_round_padding(u32* s)
{
u32 A = s[0];
u32 B = s[1];
u32 C = s[2];
u32 D = s[3];
u32 E = s[4];
u32 F = s[5];
u32 G = s[6];
u32 H = s[7];
#pragma unroll
for(uint i=0; i<64; i+=8)
{
sharound_s(A,B,C,D,E,F,G,H,P[i+0]);
sharound_s(H,A,B,C,D,E,F,G,P[i+1]);
sharound_s(G,H,A,B,C,D,E,F,P[i+2]);
sharound_s(F,G,H,A,B,C,D,E,P[i+3]);
sharound_s(E,F,G,H,A,B,C,D,P[i+4]);
sharound_s(D,E,F,G,H,A,B,C,P[i+5]);
sharound_s(C,D,E,F,G,H,A,B,P[i+6]);
sharound_s(B,C,D,E,F,G,H,A,P[i+7]);
}
s[7] += H;
}
#define ROT(x,n) (((x)<<(64-n))|( (x)>>(n)))
#define G2(arr,val,a,b,c,d,e,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,i) \
val[a] += (arr[sigma[i+e]] ^ cst[sigma[i+e+1]]) + val[b]; \
val[j] += (arr[sigma[i+n]] ^ cst[sigma[i+n+1]]) + val[k]; \
val[o] += (arr[sigma[i+s]] ^ cst[sigma[i+s+1]]) + val[p]; \
val[t] += (arr[sigma[i+x]] ^ cst[sigma[i+x+1]]) + val[u]; \
val[d] = ROT( val[d] ^ val[a],32); \
val[m] = ROT( val[m] ^ val[j],32); \
val[r] = ROT( val[r] ^ val[o],32); \
val[w] = ROT( val[w] ^ val[t],32); \
val[c] += val[d]; \
val[l] += val[m]; \
val[q] += val[r]; \
val[v] += val[w]; \
val[b] = ROT( val[b] ^ val[c],25); \
val[k] = ROT( val[k] ^ val[l],25); \
val[p] = ROT( val[p] ^ val[q],25); \
val[u] = ROT( val[u] ^ val[v],25); \
val[a] += (arr[sigma[i+e+1]] ^ cst[sigma[i+e]])+val[b]; \
val[j] += (arr[sigma[i+n+1]] ^ cst[sigma[i+n]])+val[k]; \
val[o] += (arr[sigma[i+s+1]] ^ cst[sigma[i+s]])+val[p]; \
val[t] += (arr[sigma[i+x+1]] ^ cst[sigma[i+x]])+val[u]; \
val[d] = ROT( val[d] ^ val[a],16); \
val[m] = ROT( val[m] ^ val[j],16); \
val[r] = ROT( val[r] ^ val[o],16); \
val[w] = ROT( val[w] ^ val[t],16); \
val[c] += val[d]; \
val[l] += val[m]; \
val[q] += val[r]; \
val[v] += val[w]; \
val[b] = ROT( val[b] ^ val[c],11); \
val[k] = ROT( val[k] ^ val[l],11); \
val[p] = ROT( val[p] ^ val[q],11); \
val[u] = ROT( val[u] ^ val[v],11);
//assumes input is 512 bytes
__kernel void search(__global uchar* in_param, __global uint* out_param, __global uint* pad32)
{
u8_v in[512];
#pragma unroll
for(uint i=0; i<128; ++i)
in[i] = in_param[i];
uint nonce = get_global_id(0);
*(u32*)(in+108) = nonce;
u64 h[8];
h[0]=0x6A09E667F3BCC908UL;
h[1]=0xBB67AE8584CAA73BUL;
h[2]=0x3C6EF372FE94F82BUL;
h[3]=0xA54FF53A5F1D36F1UL;
h[4]=0x510E527FADE682D1UL;
h[5]=0x9B05688C2B3E6C1FUL;
h[6]=0x1F83D9ABFB41BD6BUL;
h[7]=0x5BE0CD19137E2179UL;
u64 v[16];
#pragma unroll
for(uint i=0; i< 8;++i) v[i] = h[i];
v[ 8] = 0x243F6A8885A308D3UL;
v[ 9] = 0x13198A2E03707344UL;
v[10] = 0xA4093822299F31D0UL;
v[11] = 0x082EFA98EC4E6C89UL;
v[12] = 0x452821E638D01777UL;
v[13] = 0xBE5466CF34E9086CUL;
v[14] = 0xC0AC29B7C97C50DDUL;
v[15] = 0x3F84D5B5B5470917UL;
u64 m[16];
#pragma unroll
for(uint i=0; i<16;++i) m[i] = U8TO64(in + i*8);
#pragma unroll
for(uint i=0; i<256; i+=16)
{
G2( m, v, 0, 4, 8,12, 0, 1, 5, 9,13, 2, 2, 6,10,14, 4, 3, 7,11,15, 6, i);
G2( m, v, 3, 4, 9,14,14, 2, 7, 8,13,12, 0, 5,10,15, 8, 1, 6,11,12,10, i);
}
#pragma unroll
for(uint i=0; i<8;++i)
{
h[i] ^= v[i]^v[i+8];
v[i] = h[i];
}
v[8] = 0x243F6A8885A308D3UL;
v[9] = 0x13198A2E03707344UL;
v[10] = 0xA4093822299F31D0UL;
v[11] = 0x082EFA98EC4E6C89UL;
v[12] = 0x452821E638D01377UL;
v[13] = 0xBE5466CF34E90C6CUL;
v[14] = 0xC0AC29B7C97C50DDUL;
v[15] = 0x3F84D5B5B5470917UL;
u64 m2[16] = {1UL << 63, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0x400};
#pragma unroll
for(uint i=0; i<256; i+=16)
{
G2( m2, v, 0, 4, 8,12, 0, 1, 5, 9,13, 2, 2, 6,10,14, 4, 3, 7,11,15, 6, i);
G2( m2, v, 3, 4, 9,14,14, 2, 7, 8,13,12, 0, 5,10,15, 8, 1, 6,11,12,10, i);
}
#pragma unroll
for(uint i=0; i<8;++i) h[i] ^= v[i]^v[i+8];
u8_v* work2 = in+128;
U64TO8( work2 + 0, h[0]);
U64TO8( work2 + 8, h[1]);
U64TO8( work2 +16, h[2]);
U64TO8( work2 +24, h[3]);
U64TO8( work2 +32, h[4]);
U64TO8( work2 +40, h[5]);
U64TO8( work2 +48, h[6]);
U64TO8( work2 +56, h[7]);
u8_v* work3 = work2+64;
//a = x-1, b = x, c = x&63
#define WORKINIT(x) \
if(work3[x-1]&0x80) work3[x]=in[(x+work3[x-1])&0x7F]^work2[x+1];\
else work3[x]=work2[(x+work3[x-1])&0x3F]^work2[x+1];
work3[0] = work2[15]^work2[1];
WORKINIT(1);
WORKINIT(2);
WORKINIT(3);
u32 value = ((u32)work3[3]) << 24;
#pragma unroll
for(uint x=4;x<320;x+=4)
{
if(value&0x80000000) value=in[(x+(value>>24))&0x7F]^work2[(x+1)&0x3F];
else value=work2[(x+(value>>24))&0x3F]^work2[(x+1)&0x3F];
if(value&0x00000080) value += ((u32)(in[(x+1+value)&0x7F]^work2[(x+2)&0x3F]))<<8;
else value += ((u32)(work2[(x+1+value)&0x3F]^work2[(x+2)&0x3F]))<<8;
if(value&0x00008000) value += ((u32)(in[(x+2+(value>>8))&0x7F]^work2[(x+3)&0x3F]))<<16;
else value += ((u32)(work2[(x+2+(value>>8))&0x3F]^work2[(x+3)&0x3F]))<<16;
if(value&0x00800000) value += ((u32)(in[(x+3+(value>>16))&0x7F]^work2[(x+4)&0x3F]))<<24;
else value += ((u32)(work2[(x+3+(value>>16))&0x3F]^work2[(x+4)&0x3F]))<<24;
*(u32*)(work3+x) = value;
}
work3[319] ^= work2[0];
#define READ_W32(offset) ((u32)work3[offset] + (((u32)work3[(offset)+1])<<8) + (((u32)work3[(offset)+2]&0x3F)<<16))
#define READ_W32_0(offset) ((u32)*(u16*)(work3+offset) + (((u32)work3[(offset)+2]&0x3F)<<16))
#define READ_W32_1(offset) ((u32)work3[offset] + (((u32)((*(u16*)(work3+offset+1))&0x3FFF)<<8)))
#define PAD_MASK 0x3FFFFF
u16* shortptr = (u16*)(work3+310);
u64 qCount = shortptr[0];
qCount |= ((u64)shortptr[3])<<48;
u32* uintptr = (u32*)(work3+312);
qCount |= ((u64)*uintptr)<<16;
u32 nExtra=(((u8)pad32[(qCount+work3[300])&PAD_MASK])>>3)+512;
for(u32 x=1;x<nExtra;++x)
{
qCount += pad32[qCount&PAD_MASK];
if(qCount&0x87878700)
++work3[qCount%320];
qCount -= (u8)pad32[(qCount+work3[qCount%160])&PAD_MASK];
if (qCount&0x80000000)
qCount += (u8)pad32[qCount&0xFFFF];
else
qCount += pad32[qCount&0x20FAFB];
qCount += pad32[(qCount+work3[qCount%160])&PAD_MASK];
if (qCount&0xF0000000)
++work3[qCount%320];
//optimization that wasnt any faster, so.. not an optimization
/*if (qCount&7 < 6)
qCount += pad32[(*(u64*)(work3+(qCount&0xF8))>>((qCount&7)*8))&0x3FFFFF];
else
qCount += pad32[READ_W32((u8)qCount)];*/
qCount += pad32[READ_W32((u8)qCount)];
work3[x%320]=work2[x&63]^((u8)qCount);
qCount += pad32[((qCount>>32)+work3[x%200])&PAD_MASK];
//this is an ingenious^3 optimization that replaced the previous ingenious one.
//this one actually gives like +25% speed. twenty-five percent. dammit.
u32 qCof = (qCount%316)&0x1FC;
if (qCof&4)
{
*(u32*)(work3+qCof) ^= ((qCount>>24)&0xFFFFFFFFUL) << ((qCount&3)*8);
if ((qCount&3) != 0)
*(u32*)(work3+qCof+4) ^= (((qCount>>24)&0xFFFFFFFFUL) >> (32-(qCount&3)*8));
}
else
{
*(u64*)(work3+qCof) ^= ((qCount>>24)&0xFFFFFFFFUL) << ((qCount&3)*8);
}
if ((qCount&7) == 3) ++x;
qCount -= (u8)pad32[x*x];
if ((qCount&7) == 1) ++x;
}
u32 s[8]= {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
Sha256_round(s, in);
Sha256_round(s, in+64);
Sha256_round(s, in+128);
Sha256_round(s, in+192);
Sha256_round(s, in+256);
Sha256_round(s, in+320);
Sha256_round(s, in+384);
Sha256_round(s, in+448);
Sha256_round_padding(s);
if ((s[7] & 0x80FFFF) == 0)
{
out_param[nonce&0xFF] = nonce;
}
}