-
Notifications
You must be signed in to change notification settings - Fork 380
/
main_tb.sv
181 lines (150 loc) · 3.73 KB
/
main_tb.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
//------------------------------------------------------------------------------
// main_tb.sv
// published as part of https://github.com/pConst/basic_verilog
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Testbench template with basic clocking, reset and random stimulus signals
// use this define to make some things differently in simulation
`define SIMULATION yes
`timescale 1ns / 1ps
module main_tb();
logic clk200;
initial begin
#0 clk200 = 1'b0;
forever
#2.5 clk200 = ~clk200;
end
// external device "asynchronous" clock
logic clk33a;
initial begin
#0 clk33a = 1'b0;
forever
#7 clk33a = ~clk33a;
end
logic clk33;
//assign clk33 = clk33a;
always @(*) begin
clk33 = #($urandom_range(0, 2000)*10ps) clk33a;
end
logic rst;
initial begin
#0 rst = 1'b0;
#10.2 rst = 1'b1;
#5 rst = 1'b0;
//#10000;
forever begin
#9985 rst = ~rst;
#5 rst = ~rst;
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin
#0 rst_once = 1'b0;
#10.2 rst_once = 1'b1;
#5 rst_once = 1'b0;
end
logic nrst_once;
assign nrst_once = ~rst_once;
logic [31:0] DerivedClocks;
clk_divider #(
.WIDTH( 32 )
) cd1 (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.out( DerivedClocks[31:0] )
);
logic [31:0] E_DerivedClocks;
edge_detect ed1[31:0] (
.clk( {32{clk200}} ),
.nrst( {32{nrst_once}} ),
.in( DerivedClocks[31:0] ),
.rising( E_DerivedClocks[31:0] ),
.falling( ),
.both( )
);
logic [31:0] RandomNumber1;
c_rand rng1 (
.clk( clk200 ),
.rst( 1'b0 ),
.reseed( rst_once ),
.seed_val( DerivedClocks[31:0] ^ (DerivedClocks[31:0] << 1) ),
.out( RandomNumber1[15:0] )
);
c_rand rng2 (
.clk( clk200 ),
.rst( 1'b0 ),
.reseed( rst_once ),
.seed_val( DerivedClocks[31:0] ^ (DerivedClocks[31:0] << 2) ),
.out( RandomNumber1[31:16] )
);
logic start;
initial begin
#0 start = 1'b0;
#100 start = 1'b1;
#20 start = 1'b0;
end
// Module under test ==========================================================
logic [15:0] seq_cntr = '0;
logic [31:0] id = '0;
always_ff @(posedge clk200) begin
if( ~nrst_once ) begin
seq_cntr[15:0] <= '0;
id[31:0] <= '0;
end else begin
// incrementing sequence counter
if( seq_cntr[15:0]!= '1 ) begin
seq_cntr[15:0] <= seq_cntr[15:0] + 1'b1;
end
if( seq_cntr[15:0]<300 ) begin
id[31:0] <= '1;
//id[31:0] <= {4{RandomNumber1[15:0]}};
end else begin
id[31:0] <= '0;
end
end
end
module_under_test #(
.DEPTH( 255 ),
.DATA_W( 32 )
) M (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.id( id[31:0] ),
.od( )
);
// emulating external divice ==================================================
// that works asynchronously on clk33 clock
assign ADC1_SCLKOUT = clk33;
logic [15:0] test_data = 16'b1010_1100_1100_1111;
logic [7:0] adc1_seq_cntr = 0;
always_ff @(posedge clk33) begin
if( adc1_seq_cntr[7:0]==0 && ~ADC1_nCONV ) begin
ADC1_BUSY <= 1'b1;
ADC1_SDOUT <= test_data[15];
test_data[15:0] <= {test_data[14:0],1'b0};
adc1_seq_cntr[7:0] <= 1;
end
if( adc1_seq_cntr[7:0]>0 && adc1_seq_cntr[7:0]<33 && ADC1_SCLKOUT) begin
ADC1_SCLKOUT <= ~ADC1_SCLKOUT;
// emulating adc1 data
ADC1_SDOUT <= test_data[15];
test_data[15:0] <= {test_data[14:0],1'b0};
adc1_seq_cntr[7:0] <= adc1_seq_cntr[7:0] + 1'b1;
end
if( adc1_seq_cntr[7:0]>0 && adc1_seq_cntr[7:0]<33 && ~ADC1_SCLKOUT) begin
ADC1_SCLKOUT <= ~ADC1_SCLKOUT;
adc1_seq_cntr[7:0] <= adc1_seq_cntr[7:0] + 1'b1;
end
if( adc1_seq_cntr[7:0]==33 ) begin
ADC1_BUSY <= 0;
ADC1_SCLKOUT <= 0;
ADC1_SDOUT <= 0;
adc1_seq_cntr[7:0] <= 0;
end
end
endmodule