-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.cu
446 lines (365 loc) · 15.1 KB
/
main.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// IDE indexing
#ifdef __JETBRAINS_IDE__
#define __host__
#define __device__
#define __shared__
#define __constant__
#define __global__
#define __CUDACC__
#include <device_functions.h>
#include <__clang_cuda_builtin_vars.h>
#include <__clang_cuda_intrinsics.h>
#include <__clang_cuda_math_forward_declares.h>
#include <__clang_cuda_complex_builtins.h>
#include <__clang_cuda_cmath.h>
#endif
#include <stdint.h>
#include <memory.h>
#include <stdio.h>
#include <time.h>
#include <ctype.h>
#define signed_seed_t int64_t
#define uint uint32_t
#define ulong uint64_t
// let's be EVIL (and make sure all includes come before this)
#define int int32_t
#undef JRAND_DOUBLE
#define RANDOM_MULTIPLIER_LONG 0x5DEECE66DULL
#ifdef JRAND_DOUBLE
#define Random double
#define RANDOM_MULTIPLIER 0x5DEECE66Dp-48
#define RANDOM_ADDEND 0xBp-48
#define RANDOM_SCALE 0x1p-48
// should be signed with int32_t (to verify)
inline uint __host__ __device__ random_next(Random *random, int bits) {
*random = trunc((*random * RANDOM_MULTIPLIER + RANDOM_ADDEND) * RANDOM_SCALE);
return (uint)((ulong)(*random / RANDOM_SCALE) >> (48 - bits));
}
#else
#define Random ulong
#define RANDOM_MULTIPLIER RANDOM_MULTIPLIER_LONG
#define RANDOM_ADDEND 0xBULL
#define RANDOM_MASK (1ULL << 48) - 1
#define RANDOM_SCALE 1
#define FAST_NEXT_INT
// Random::next(bits)
__host__ __device__ inline uint random_next(Random *random, int bits) {
*random = (*random * RANDOM_MULTIPLIER + RANDOM_ADDEND) & RANDOM_MASK;
return (uint)(*random >> (48 - bits));
}
#endif // ~JRAND_DOUBLE
// new Random(seed)
#define get_random(seed) ((Random)((seed ^ RANDOM_MULTIPLIER_LONG) & RANDOM_MASK))
#define get_random_unseeded(state) ((Random) ((state) * RANDOM_SCALE))
// Random::nextInt(bound)
__host__ __device__ inline uint random_next_int(Random *random, uint bound) {
int r = random_next(random, 31);
int m = bound - 1;
if ((bound & m) == 0) {
// Could probably use __mul64hi here
r = (uint)((bound * (ulong)r) >> 31);
} else {
#ifdef FAST_NEXT_INT
r %= bound;
#else
for (int u = r;
u - (r = u % bound) + m < 0;
u = random_next(random, 31));
#endif
}
return r;
}
__host__ __device__ inline int64_t random_next_long (Random *random) {
return (((int64_t)random_next(random, 32)) << 32) + (int32_t) random_next(random, 32);
}
#define CHECK_GPU_ERR(code) gpuAssert((code), __FILE__, __LINE__)
inline void gpuAssert(cudaError_t code, const char* file, int line) {
if (code != cudaSuccess) {
fprintf(stderr, "GPUassert: %s (code %d) %s %d\n", cudaGetErrorString(code), code, file, line);
exit(code);
}
}
// advance
#define advance(rand, multiplier, addend) ((rand) = ((rand) * (multiplier) + (addend)) & RANDOM_MASK)
#define advance_830(rand) advance(rand, 0x859D39E832D9LL, 0xE3E2DF5E9196LL)
#define advance_774(rand) advance(rand, 0xF8D900133F9LL, 0x5738CAC2F85ELL)
#define advance_387(rand) advance(rand, 0x5FE2BCEF32B5LL, 0xB072B3BF0CBDLL)
#define advance_16(rand) advance(rand, 0x6DC260740241LL, 0xD0352014D90LL)
#define advance_m1(rand) advance(rand, 0xDFE05BCB1365LL, 0x615C0E462AA9LL)
#define advance_m3759(rand) advance(rand, 0x63A9985BE4ADLL, 0xA9AA8DA9BC9BLL)
#define TREE_X 4
#define TREE_Z 3
#define TREE_HEIGHT 6
#define OTHER_TREE_COUNT 3
__device__ inline int getTreeHeight(int x, int z) {
if (x == TREE_X && z == TREE_Z)
return TREE_HEIGHT;
if (x == 1 && z == 13)
return 5;
if (x == 6 && z == 12)
return 6;
if (x == 14 && z == 7) {
return 5;
}
return 0;
}
#define WATERFALL_X 9
#define WATERFALL_Y 76
#define WATERFALL_Z 1
#define MODULUS (1LL << 48)
#define SQUARE_SIDE (MODULUS / 16)
#define X_TRANSLATE 0
#define Z_TRANSLATE 11
#define L00 7847617LL
#define L01 (-18218081LL)
#define L10 4824621LL
#define L11 24667315LL
#define LI00 (24667315.0 / 16)
#define LI01 (18218081.0 / 16)
#define LI10 (-4824621.0 / 16)
#define LI11 (7847617.0 / 16)
#define CONST_MIN(a, b) ((a) < (b) ? (a) : (b))
#define CONST_MIN4(a, b, c, d) CONST_MIN(CONST_MIN(a, b), CONST_MIN(c, d))
#define CONST_MAX(a, b) ((a) > (b) ? (a) : (b))
#define CONST_MAX4(a, b, c, d) CONST_MAX(CONST_MAX(a, b), CONST_MAX(c, d))
#define CONST_FLOOR(x) ((x) < (signed_seed_t) (x) ? (signed_seed_t) (x) - 1 : (signed_seed_t) (x))
#define CONST_CEIL(x) ((x) == (signed_seed_t) (x) ? (signed_seed_t) (x) : CONST_FLOOR((x) + 1))
#define CONST_LOWER(x, m, c) ((m) < 0 ? ((x) + 1 - (double) (c) / MODULUS) * (m) : ((x) - (double) (c) / MODULUS) * (m))
#define CONST_UPPER(x, m, c) ((m) < 0 ? ((x) - (double) (c) / MODULUS) * (m) : ((x) + 1 - (double) (c) / MODULUS) * (m))
// for a parallelogram ABCD https://media.discordapp.net/attachments/668607204009574411/671018577561649163/unknown.png
#define B_X LI00
#define B_Z LI10
#define C_X (LI00 + LI01)
#define C_Z (LI10 + LI11)
#define D_X LI01
#define D_Z LI11
#define LOWER_X CONST_MIN4(0, B_X, C_X, D_X)
#define LOWER_Z CONST_MIN4(0, B_Z, C_Z, D_Z)
#define UPPER_X CONST_MAX4(0, B_X, C_X, D_X)
#define UPPER_Z CONST_MAX4(0, B_Z, C_Z, D_Z)
#define ORIG_SIZE_X (UPPER_X - LOWER_X + 1)
#define SIZE_X CONST_CEIL(ORIG_SIZE_X - D_X)
#define SIZE_Z CONST_CEIL(UPPER_Z - LOWER_Z + 1)
#define TOTAL_WORK_SIZE (SIZE_X * SIZE_Z)
#define MAX_TREE_ATTEMPTS 12
#define MAX_TREE_SEARCH_BACK (3 * MAX_TREE_ATTEMPTS - 3 + 16 * OTHER_TREE_COUNT)
__constant__ ulong search_back_multipliers[MAX_TREE_SEARCH_BACK + 1];
__constant__ ulong search_back_addends[MAX_TREE_SEARCH_BACK + 1];
int search_back_count;
#define WORK_UNIT_SIZE (1LL << 23)
#define BLOCK_SIZE 256
__global__ void doPreWork(ulong offset, Random* starts, int* num_starts) {
// lattice tree position
ulong global_id = blockIdx.x * blockDim.x + threadIdx.x;
signed_seed_t lattice_x = (signed_seed_t) ((offset + global_id) % SIZE_X) + LOWER_X;
signed_seed_t lattice_z = (signed_seed_t) ((offset + global_id) / SIZE_X) + LOWER_Z;
lattice_z += (B_X * lattice_z < B_Z * lattice_x) * SIZE_Z;
if (D_X * lattice_z > D_Z * lattice_x) {
lattice_x += B_X;
lattice_z += B_Z;
}
lattice_x += (signed_seed_t) (TREE_X * LI00 + TREE_Z * LI01);
lattice_z += (signed_seed_t) (TREE_X * LI10 + TREE_Z * LI11);
Random rand = (Random) ((lattice_x * L00 + lattice_z * L01 + X_TRANSLATE) % MODULUS);
advance_m1(rand);
Random tree_start = rand;
advance_m1(tree_start);
bool res = random_next(&rand, 4) == TREE_X;
res &= random_next(&rand, 4) == TREE_Z;
res &= random_next_int(&rand, 3) == (ulong) (TREE_HEIGHT - 4);
if(res) {
int index = atomicAdd(num_starts, 1);
starts[index] = tree_start;
}
}
__global__ void doWork(int* num_starts, Random* tree_starts, int* num_seeds, ulong* seeds, int gpu_search_back_count) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < *num_starts; i += blockDim.x * gridDim.x) {
Random tree_start = tree_starts[i];
for (int treeBackCalls = 0; treeBackCalls <= gpu_search_back_count; treeBackCalls++) {
Random start = (tree_start * search_back_multipliers[treeBackCalls] + search_back_addends[treeBackCalls]) & RANDOM_MASK;
Random rand = start;
bool this_res = true;
if(random_next_int(&rand, 10) == 0)
continue;
char generated_tree[16][2];
memset(generated_tree, 0x00, sizeof(generated_tree));
int treesMatched = 0;
bool any_population_matches = false;
for (int treeAttempt = 0; treeAttempt <= MAX_TREE_ATTEMPTS; treeAttempt++) {
int treeX = random_next(&rand, 4);
int treeZ = random_next(&rand, 4);
int wantedTreeHeight = getTreeHeight(treeX, treeZ);
int treeHeight = random_next_int(&rand, 3) + 4;
char& boolpack = generated_tree[treeX][treeZ / 8];
const char mask = 1 << (treeZ % 8);
if (treeHeight == wantedTreeHeight && !(boolpack & mask)) {
treesMatched++;
boolpack |= mask;
advance_16(rand);
}
if (treesMatched == OTHER_TREE_COUNT + 1) {
Random before_rest = rand;
// yellow flowers
advance_774(rand);
// red flowers
if (random_next(&rand, 1) == 0) {
advance_387(rand);
}
// brown mushroom
if (random_next(&rand, 2) == 0) {
advance_387(rand);
}
// red mushroom
if (random_next(&rand, 3) == 0) {
advance_387(rand);
}
// reeds
advance_830(rand);
// pumpkins
if (random_next(&rand, 5) == 0) {
advance_387(rand);
}
for (int i = 0; i < 50; i++) {
bool waterfall_matches = random_next(&rand, 4) == WATERFALL_X;
waterfall_matches &= random_next_int(&rand, random_next_int(&rand, 120) + 8) == WATERFALL_Y;
waterfall_matches &= random_next(&rand, 4) == WATERFALL_Z;
any_population_matches |= waterfall_matches;
}
rand = before_rest;
}
}
this_res &= any_population_matches;
if (this_res) {
Random start_chunk_rand = start;
advance_m3759(start_chunk_rand);
int index = atomicAdd(num_seeds, 1);
seeds[index] = start_chunk_rand;
}
advance_m1(start);
}
}
}
struct GPU_Node {
int GPU;
int* num_seeds;
ulong* seeds;
int* num_tree_starts;
Random* tree_starts;
};
void setup_gpu_node(GPU_Node* node, int gpu) {
CHECK_GPU_ERR(cudaSetDevice(gpu));
node->GPU = gpu;
CHECK_GPU_ERR(cudaMallocManaged(&node->num_seeds, sizeof(*node->num_seeds)));
CHECK_GPU_ERR(cudaMallocManaged(&node->seeds, (1LL << 20))); // approx 1MB
CHECK_GPU_ERR(cudaMallocManaged(&node->num_tree_starts, sizeof(*node->num_tree_starts)));
CHECK_GPU_ERR(cudaMallocManaged(&node->tree_starts, (sizeof(Random)*WORK_UNIT_SIZE)));
}
void calculate_search_backs(int GPU_COUNT) {
bool allow_search_back[MAX_TREE_SEARCH_BACK + 1];
memset(allow_search_back, false, sizeof(allow_search_back));
for (int i = 0; i <= MAX_TREE_ATTEMPTS - OTHER_TREE_COUNT - 1; i++) {
allow_search_back[i * 3] = true;
}
for (int tree = 0; tree < OTHER_TREE_COUNT; tree++) {
for (int i = 0; i <= MAX_TREE_SEARCH_BACK - 19; i++) {
if (allow_search_back[i])
allow_search_back[i + 19] = true;
}
}
search_back_count = 0;
ulong multiplier = 1;
ulong addend = 0;
ulong multipliers[MAX_TREE_SEARCH_BACK + 1];
ulong addends[MAX_TREE_SEARCH_BACK + 1];
for (int i = 0; i <= MAX_TREE_SEARCH_BACK; i++) {
if (allow_search_back[i]) {
int index = search_back_count++;
multipliers[index] = multiplier;
addends[index] = addend;
}
multiplier = (multiplier * 0xDFE05BCB1365LL) & RANDOM_MASK;
addend = (0xDFE05BCB1365LL * addend + 0x615C0E462AA9LL) & RANDOM_MASK;
}
for (int gpu = 0; gpu < GPU_COUNT; gpu++) {
CHECK_GPU_ERR(cudaSetDevice(gpu));
CHECK_GPU_ERR(cudaMemcpyToSymbol(search_back_multipliers, &multipliers, search_back_count * sizeof(*multipliers)));
CHECK_GPU_ERR(cudaMemcpyToSymbol(search_back_addends, &addends, search_back_count * sizeof(*addends)));
}
}
#undef int
int main(int argc, char *argv[]) {
#define int int32_t
int GPU_COUNT = 1;
for (int i = 1; i < argc; i++) {
if (argv[i][0] == '-') {
switch(argv[i][1]) {
case 'g':
if(isdigit(argv[i][2])) GPU_COUNT = atoi(argv[i] + 2);
break;
default:
printf("Error: Flag not recognized.");
return -1;
}
} else {
printf("Error: Please specify flag before argument.");
return -1;
}
}
GPU_Node *nodes = (GPU_Node*)malloc(sizeof(GPU_Node) * GPU_COUNT);
printf("Searching %lld total seeds...\n", TOTAL_WORK_SIZE);
calculate_search_backs(GPU_COUNT);
FILE* out_file = fopen("chunk_seeds.txt", "w");
for(int i = 0; i < GPU_COUNT; i++) {
setup_gpu_node(&nodes[i],i);
}
ulong count = 0;
clock_t lastIteration = clock();
clock_t startTime = clock();
for (ulong offset = 0; offset < TOTAL_WORK_SIZE;) {
for(int gpu_index = 0; gpu_index < GPU_COUNT; gpu_index++) {
CHECK_GPU_ERR(cudaSetDevice(gpu_index));
*nodes[gpu_index].num_tree_starts = 0;
doPreWork <<<WORK_UNIT_SIZE / BLOCK_SIZE, BLOCK_SIZE>>> (offset, nodes[gpu_index].tree_starts, nodes[gpu_index].num_tree_starts);
offset += WORK_UNIT_SIZE;
}
for(int gpu_index = 0; gpu_index < GPU_COUNT; gpu_index++) {
CHECK_GPU_ERR(cudaSetDevice(gpu_index));
CHECK_GPU_ERR(cudaDeviceSynchronize());
}
for(int gpu_index = 0; gpu_index < GPU_COUNT; gpu_index++) {
CHECK_GPU_ERR(cudaSetDevice(gpu_index));
*nodes[gpu_index].num_seeds = 0;
doWork <<<WORK_UNIT_SIZE / BLOCK_SIZE, BLOCK_SIZE>>> (nodes[gpu_index].num_tree_starts, nodes[gpu_index].tree_starts, nodes[gpu_index].num_seeds, nodes[gpu_index].seeds, search_back_count);
}
for(int gpu_index = 0; gpu_index < GPU_COUNT; gpu_index++) {
CHECK_GPU_ERR(cudaSetDevice(gpu_index));
CHECK_GPU_ERR(cudaDeviceSynchronize());
for (int i = 0, e = *nodes[gpu_index].num_seeds; i < e; i++) {
fprintf(out_file, "%lld\n", nodes[gpu_index].seeds[i]);
}
fflush(out_file);
count += *nodes[gpu_index].num_seeds;
}
double iterationTime = (double)(clock() - lastIteration) / CLOCKS_PER_SEC;
double timeElapsed = (double)(clock() - startTime) / CLOCKS_PER_SEC;
lastIteration = clock();
ulong numSearched = offset + WORK_UNIT_SIZE * GPU_COUNT;
double speed = (double)WORK_UNIT_SIZE * GPU_COUNT / (double)iterationTime / 1000000.0;
double progress = (double)numSearched / (double)TOTAL_WORK_SIZE * 100.0;
double estimatedTime = (double)(TOTAL_WORK_SIZE - numSearched) / (double) (WORK_UNIT_SIZE * GPU_COUNT) * iterationTime;
char suffix = 's';
if (estimatedTime >= 3600) {
suffix = 'h';
estimatedTime /= 3600.0;
} else if (estimatedTime >= 60) {
suffix = 'm';
estimatedTime /= 60.0;
}
if (progress >= 100.0) {
estimatedTime = 0.0;
suffix = 's';
}
printf("Searched: %lld seeds. Found: %lld matches. Uptime: %.1fs. Speed: %.2fm seeds/s. Completion: %.3f%%. ETA: %.1f%c.\n", numSearched, count, timeElapsed, speed, progress, estimatedTime, suffix);
}
fclose(out_file);
}