-
Notifications
You must be signed in to change notification settings - Fork 0
/
svm.py
636 lines (478 loc) · 23.2 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
"""
Copyright 2019 Wietse de Vries and Martijn Bartelds
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import numpy as np
import json
from glob import glob
import os
import time
import argparse
import pickle
import codecs
import warnings
import pandas as pd
import scipy as sp
from conll_df import conll_df
from sklearn.base import BaseEstimator, TransformerMixin, ClassifierMixin
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import MaxAbsScaler
from sklearn.decomposition import TruncatedSVD
from sklearn.calibration import CalibratedClassifierCV
from sklearn.svm import LinearSVC
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import f1_score, precision_recall_fscore_support
from sklearn.metrics.classification import UndefinedMetricWarning
warnings.filterwarnings('ignore', category=UndefinedMetricWarning)
FLOAT_DTYPES = (np.float64, np.float32, np.float16)
def read_problem_info(path, problem_name):
problem_path = path + os.sep + problem_name
probleminfo_path = problem_path + os.sep + 'problem-info.json'
with open(probleminfo_path, 'r') as f:
probleminfo = json.load(f)
def list_files(candidate): return glob(problem_path + os.sep + candidate + os.sep + '*.txt')
candidates = {c['author-name']: list_files(c['author-name']) for c in probleminfo['candidate-authors']}
return candidates, list_files(probleminfo['unknown-folder'])
def read_collection_info(path):
with open(path + os.sep + 'collection-info.json', 'r') as f:
collectioninfo = json.load(f)
for probleminfo in collectioninfo:
candidates, unk_folder = read_problem_info(path, probleminfo['problem-name'])
probleminfo['candidates'] = candidates
probleminfo['unknown'] = unk_folder
return collectioninfo
def save_output(outpath, problem_name, test_names, predictions):
os.makedirs(outpath, exist_ok=True)
out_data = []
for unknown, prediction in zip(test_names, predictions):
unknown_name = unknown.split('/')[-1]
out_data.append(
{'unknown-text': unknown_name, 'predicted-author': prediction})
with open(outpath + os.sep + 'answers-' + problem_name + '.json', 'w') as f:
json.dump(out_data, f, indent=4)
print(' > answers saved to file', 'answers-' + problem_name + '.json')
def get_model_inputs(candidates):
filenames, labels = [], []
for c, c_files in candidates.items():
filenames.extend(c_files)
labels.extend([c] * len(c_files))
return filenames, labels
def get_test_labels(filenames, collectioninfo, path):
filenames = [f.replace(path + os.sep, '').split(os.sep) for f in filenames]
labels = []
truths = {}
for problem, _, filename in filenames:
if problem not in truths:
with open(path + os.sep + problem + '/ground-truth.json', 'r') as f:
truth = json.load(f)['ground_truth']
truths[problem] = {t['unknown-text']: t['true-author'] for t in truth}
labels.append(truths[problem][filename])
return labels
class FeatureExtractor(BaseEstimator, TransformerMixin):
""" Based on https://scikit-learn.org/0.18/auto_examples/hetero_feature_union.html """
def fit(self, x, y=None):
return self
def _read_text(self, filename):
""" Read raw texts from .txt file """
with codecs.open(filename, 'r', encoding='utf-8') as f:
return f.read()
def _read_words(self, filename):
""" Read tokens and pos tags from .txt.pos file """
with codecs.open(filename + '.pos', 'r', encoding='utf-8') as f:
tokens, pos_tags = [], []
for line in f.readlines():
word = line.rstrip().split()
if len(word) == 2:
tokens.append(word[0])
pos_tags.append(word[1])
return tokens, pos_tags
def _read_syntax(self, filename):
dep_df = conll_df(filename + '.dep', file_index=False)
if dep_df.index.levels[1].dtype != np.int64:
dep_df.reset_index(inplace=True)
dep_df = dep_df[dep_df['i'].str.isnumeric()]
dep_df['i'] = dep_df['i'].astype(int)
dep_df.set_index(['s', 'i'], inplace=True)
return dep_df.rename(columns={'w': 'word', 'l': 'lemma', 'f': 'dep'})
def transform(self, filenames):
features = np.recarray(shape=(len(filenames),),
dtype=[
('text', object),
('tokens', object),
('pos_tags', object),
('syntax', object)
])
for i, filename in enumerate(filenames):
features['text'][i] = self._read_text(filename)
features['tokens'][i], features['pos_tags'][i] = self._read_words(filename)
features['syntax'][i] = self._read_syntax(filename)
return features
class FeatureSelector(BaseEstimator, TransformerMixin):
def __init__(self, key):
self.key = key
def fit(self, x, y=None):
return self
def transform(self, data):
return data[self.key]
class ProbabilityThreshold(BaseEstimator, ClassifierMixin):
""" Sets uncertain predictions to <UNK> """
def __init__(self, estimator, pt):
self.estimator = estimator
self.pt = pt
def fit(self, X, y):
self.classes_ = list(set(y))
self.estimator.fit(X, y)
def predict(self, X):
proba = self.estimator.predict_proba(X)
y = self.estimator.classes_[np.argmax(proba, axis=1)]
proba.sort(axis=1)
diff = proba[:, -1] - proba[:, -2]
y[diff < self.pt] = '<UNK>'
return y
def identity(x):
return x
def _document_group_frequency(X, y=None):
X = X.toarray()
X[X > 0] = 1
if y is None:
return X.shape[0], X.sum(axis=0)
group_df = pd.DataFrame(X).groupby(y).sum()
# in_df = np.vstack([group_df.loc[label] for label in y])
df = np.vstack([np.asarray(X.sum(axis=0)).flatten() - group_df.loc[label].values for label in y]) + 1
n_samples = np.vstack([np.sum(y != label) for label in y]) + 1
return n_samples, df
# class GroupTfidfTransformer(TfidfTransformer):
# def fit(self, X, y=None):
# assert y is not None
# super(GroupTfidfTransformer, self).fit(X, y)
# dtype = X.dtype if X.dtype in FLOAT_DTYPES else np.float64
# n_samples, n_features = X.shape
# n_samples, df = self._document_frequency(X, dtype=dtype)
# n_group_samples, group_df = self._document_frequency(X, y, dtype=dtype)
# # perform idf smoothing if required
# df += int(self.smooth_idf)
# group_df += int(self.smooth_idf)
# n_samples += int(self.smooth_idf)
# n_group_samples += int(self.smooth_idf)
# # log+1 instead of log makes sure terms with zero idf don't get
# # suppressed entirely.
# idf = np.log(n_samples / df) + 1
# self._idf_diag = sp.sparse.diags(idf, offsets=0,
# shape=(n_features, n_features),
# format='csr',
# dtype=dtype)
# group_idf = np.log(n_group_samples / group_df) + 1
# self._group_idf = group_idf
# return self
# def transform(self, X, y=None, copy=True):
# if y is not None:
# if sp.sparse.issparse(X):
# X = X.toarray()
# return X * self._group_idf
# return super(GroupTfidfTransformer, self).transform(X, copy=copy)
class GroupTfidfVectorizer(TfidfVectorizer):
def __init__(self, input='content', encoding='utf-8',
decode_error='strict', strip_accents=None, lowercase=True,
preprocessor=None, tokenizer=None, analyzer='word',
stop_words=None, token_pattern=r"(?u)\b\w\w+\b",
ngram_range=(1, 1), max_df=1.0, min_df=1,
max_features=None, vocabulary=None, binary=False,
dtype=np.float64, norm='l2', use_idf=True, smooth_idf=True,
sublinear_tf=False,
min_group_df=1):
super(GroupTfidfVectorizer, self).__init__(
input=input, encoding=encoding, decode_error=decode_error,
strip_accents=strip_accents, lowercase=lowercase,
preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer,
stop_words=stop_words, token_pattern=token_pattern,
ngram_range=ngram_range, max_df=max_df, min_df=min_df,
max_features=max_features, vocabulary=vocabulary, binary=binary,
dtype=dtype, norm=norm, use_idf=use_idf, smooth_idf=smooth_idf,
sublinear_tf=sublinear_tf)
self.min_group_df = min_group_df
# if use_gidf:
# self._tfidf = GroupTfidfTransformer(norm=norm, use_idf=use_idf,
# smooth_idf=smooth_idf,
# sublinear_tf=sublinear_tf)
# else:
# self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf,
# smooth_idf=smooth_idf,
# sublinear_tf=sublinear_tf)
def fit_transform(self, raw_documents, y=None):
self._check_params()
X = super(TfidfVectorizer, self).fit_transform(raw_documents)
self._tfidf.fit(X)
X = self._tfidf.transform(X, copy=False)
return self._limit_group_features(X, y)
def _limit_group_features(self, X, y):
n_samples, y_df = _document_group_frequency(X, y)
if sp.sparse.issparse(X):
X = X.tolil()
if self.min_group_df > 1:
X[y_df < self.min_group_df] = 0
return X
class SyntacticGroupTfidfVectorizer(GroupTfidfVectorizer):
""" Uses ngrams based on dependency syntax hierarchy """
def _dep_ngrams(self, dep_df):
""" analyzer can be one of [word, lemma, dep] """
min_n, max_n = self.ngram_range
ngrams = []
unigrams = []
sent_ids = dep_df['dep'].index.get_level_values(0).unique()
for sent_id in sent_ids:
sent_df = dep_df.loc[sent_id]
tokens = sent_df[self.analyzer]
heads = sent_df['g']
for idx, head in heads.items():
ngram = [tokens[idx]]
unigrams.append((ngram, idx, head))
if min_n == 1:
ngrams.append(tuple(ngram))
while len(ngram) < max_n and head > 0 and head in tokens:
ngram.append(tokens[head])
head = heads[head]
if len(ngram) >= min_n:
ngrams.append(tuple(ngram))
if len(ngrams) == 0:
raise ValueError(str(sent_ids) + str(unigrams) + str(dep_df))
return ngrams
def build_analyzer(self):
return self._dep_ngrams
class StratifiedSplitter():
""" Split data based on task specifications """
def __init__(self, n_problems=20, n_candidates=9, n_train_docs=7, n_test_docs=100, unk_ratio=0.5,
random_state=None):
assert n_problems % 4 == 0
self.n_problems = n_problems
self.n_candidates = n_candidates
self.n_train_docs = n_train_docs
self.n_test_docs = n_test_docs
self.unk_ratio = unk_ratio
self.random_state = random_state
def split(self, X, y=None, groups=None):
labels, languages = y, groups
rnd = np.random.RandomState(self.random_state)
lang_set = sorted(set(languages))
for lang in lang_set:
lang_index = np.argwhere(languages == lang)[:, 0]
for _ in range(self.n_problems // 4):
candidates = labels[lang_index]
candidate_set = list(set(candidates) - {'<UNK>', 'problem00020_candidate00000'})
candidate_subset = rnd.choice(candidate_set, self.n_candidates, replace=False)
train_index, test_index = [], []
for candidate in candidate_subset:
candidate_index = lang_index[np.argwhere(candidates == candidate)[:, 0]]
rnd.shuffle(candidate_index)
train_index.extend(candidate_index[:self.n_train_docs])
test_index.extend(candidate_index[self.n_train_docs:self.n_train_docs + self.n_test_docs])
unk_index = lang_index[np.argwhere(np.isin(labels[lang_index], candidate_subset, invert=True))[:, 0]]
rnd.shuffle(unk_index)
test_index.extend(unk_index[:int(len(test_index) * self.unk_ratio)])
rnd.shuffle(train_index)
rnd.shuffle(test_index)
yield train_index, test_index
def get_n_splits(self, X=None, y=None, groups=None):
return self.n_problems
def merge_probleminfo(collectioninfo, path):
filenames, labels, languages = [], [], []
for probleminfo in collectioninfo:
lang = probleminfo['language']
prob_name = probleminfo['problem-name']
prob_filenames, prob_labels = get_model_inputs(probleminfo['candidates'])
prob_filenames.extend(probleminfo['unknown'])
prob_labels.extend(get_test_labels(probleminfo['unknown'], collectioninfo, path))
filenames.extend(prob_filenames)
labels.extend([prob_name + '_' + f if f != '<UNK>' else '<UNK>' for f in prob_labels])
languages.extend([lang] * len(prob_filenames))
return np.array(filenames), np.array(labels), np.array(languages)
def f1_macro(estimator, X, y_true):
warnings.filterwarnings('ignore', category=UndefinedMetricWarning)
y_pred = estimator.predict(X)
return f1_score(y_true, y_pred,
labels=estimator.classes_,
average='macro')
class VisualTransformer(BaseEstimator, TransformerMixin): # TODO Fix ngram_range (2,2) and (3,3)
def __init__(self, ngram_range=(1, 1)):
self.vocab = None
self.ngram_range = ngram_range
def _ngrams(self, x):
punct_set = ['.', ',', ':', ';', '-', '?', '!', '(', ')', '\'', '"']
x_puncts = [t for t in x if t in punct_set]
min_n, max_n = self.ngram_range
ngrams = []
for n in range(min_n, max_n + 1):
ngrams.extend([tuple(x_puncts[i:i+n]) for i in range(len(x_puncts) - n + 1)])
return ngrams
def fit(self, X, y=None):
ngrams = np.unique([ngram for x in X for ngram in self._ngrams(x)])
self.vocab = list(ngrams)
return self
def transform(self, X):
X_ngrams = [self._ngrams(x) for x in X]
return [[np.sum([n == ngram for n in x]) for ngram in self.vocab] for x in X_ngrams]
pipeline = Pipeline([
('raw_features', FeatureExtractor()),
('feature_union', FeatureUnion(
[
# Select best character n-gram features char_ngrams__text__ngram_range
('visual', Pipeline([
('text', FeatureSelector('tokens')),
('features', VisualTransformer(ngram_range=(1, 2))),
('scaler', MaxAbsScaler())
])),
# Select best character n-gram features char_ngrams__text__ngram_range
('char_ngrams', Pipeline([
('text', FeatureSelector('text')),
('tfidf', GroupTfidfVectorizer(analyzer='char', lowercase=False,
ngram_range=(2, 4), use_idf=True, min_group_df=1)),
('scaler', MaxAbsScaler()),
('best', TruncatedSVD(n_components=150))
])),
# Select best token n-gram features
('token_ngrams', Pipeline([
('text', FeatureSelector('tokens')),
('tfidf', GroupTfidfVectorizer(analyzer='word', ngram_range=(2, 2), min_df=5,
lowercase=False, tokenizer=identity, use_idf=False)),
('scaler', MaxAbsScaler()),
('best', TruncatedSVD(n_components=150))
])),
# Select best POS tag n-gram features
('pos_ngrams', Pipeline([
('text', FeatureSelector('pos_tags')),
('tfidf', GroupTfidfVectorizer(analyzer='word', tokenizer=identity, lowercase=False,
ngram_range=(1, 4), use_idf=False, min_group_df=1)),
('scaler', MaxAbsScaler()),
('best', TruncatedSVD(n_components=150))
])),
# Select best dependency tag sn-gram features
('dep_sngrams', Pipeline([
('text', FeatureSelector('syntax')),
('tfidf', SyntacticGroupTfidfVectorizer(analyzer='dep',
ngram_range=(1, 2), use_idf=False, min_group_df=3)),
('scaler', MaxAbsScaler()),
('best', TruncatedSVD(n_components=150))
])),
# Select best word sn-gram features
('token_sngrams', Pipeline([
('text', FeatureSelector('syntax')),
('tfidf', SyntacticGroupTfidfVectorizer(analyzer='word',
ngram_range=(2, 3), use_idf=False, min_group_df=3)),
('scaler', MaxAbsScaler()),
('best', TruncatedSVD(n_components=150))
]))
],
)),
('svc', ProbabilityThreshold(
CalibratedClassifierCV(LinearSVC(), cv=5),
pt=0.1)
),
])
def predict_all_problems(path, outpath, features, evaluate=False):
start_time = time.time()
lang_scores = {'en': [], 'fr': [], 'it': [], 'sp': []}
collectioninfo = read_collection_info(path)
for probleminfo in collectioninfo:
print('Solving problem {} [{}]'.format(probleminfo['problem-name'], probleminfo['language']))
train_filenames, train_labels = get_model_inputs(probleminfo['candidates'])
test_filenames = probleminfo['unknown']
pipeline.set_params(
feature_union__transformer_weights={
'visual': 1 if 'visual' in features else 0,
'char_ngrams': 1 if 'char_ngrams' in features else 0,
'token_ngrams': 1 if 'token_ngrams' in features else 0,
'pos_ngrams': 1 if 'pos_ngrams' in features else 0,
'dep_sngrams': 1 if 'dep_sngrams' in features else 0,
'token_sngrams': 1 if 'token_sngrams' in features else 0
}
)
pipeline.fit(train_filenames, train_labels)
predictions = list(pipeline.predict(test_filenames))
if evaluate:
test_labels = get_test_labels(test_filenames, collectioninfo, path)
prob_scores = precision_recall_fscore_support(test_labels, predictions,
labels=list(probleminfo['candidates'].keys()),
average='macro')
lang_scores[probleminfo['language']].append(prob_scores)
print(*prob_scores)
save_output(outpath, probleminfo['problem-name'], test_filenames, predictions)
if evaluate:
p, r, f = [], [], []
for lang, scores in lang_scores.items():
lp, lr, lf = [], [], []
for prob_scores in scores:
lp.append(prob_scores[0])
lr.append(prob_scores[1])
lf.append(prob_scores[2])
print(lang + ':', np.mean(lp), np.mean(lr), np.mean(lf))
p.append(lp)
r.append(lr)
f.append(lf)
print('Overall:', np.mean(p), np.mean(r), np.mean(f))
print('elapsed time:', time.time() - start_time)
def grid_search(path, outpath, features, evaluate=False):
collectioninfo = read_collection_info(path)
filenames, labels, languages = merge_probleminfo(collectioninfo, path)
n_problems = 40
param_grids = []
param_grids.append({
'feature_union__visual__features__ngram_range': [(1, 1), (1, 2), (1, 3), (1, 4)]
})
for f in ['char_ngrams', 'pos_ngrams', 'dep_sngrams', 'token_sngrams']:
ngram_range = [(i, j) for i in [1, 2] for j in [1, 2, 3, 4] if j >= i]
param_grids.append({
'feature_union__{}__tfidf__ngram_range'.format(f): ngram_range,
'feature_union__{}__tfidf__use_idf'.format(f): [True, False],
'feature_union__{}__tfidf__min_group_df'.format(f): range(1, 5),
})
param_grids.append({
'svc__pt': [0.01, 0.05, 0.1, 0.15, 0.2]
})
for i, param_grid in enumerate(param_grids):
print('Starting grid search {}'.format(i))
cv = GridSearchCV(pipeline, param_grid, f1_macro, n_jobs=-1, iid=False,
cv=StratifiedSplitter(n_problems=n_problems, random_state=123),
error_score=np.nan, return_train_score=False, refit=False, verbose=3)
cv.fit(X=filenames, y=labels, groups=languages)
print('Search finished. Best mean macro f1-score is {} [{}]\n'.format(cv.best_score_, cv.best_index_))
with open(outpath + os.sep + 'cv_results_{}.pkl'.format(i), 'wb') as f:
pickle.dump(cv.cv_results_, f)
with open(outpath + os.sep + 'best_params_{}.json'.format(i), 'w') as f:
f.write(json.dumps(cv.best_params_))
pipeline.set_params(**cv.best_params_)
def preprocess_input(raw_path, input_path):
print(os.system('./scripts/runAll.sh {} {}'.format(raw_path, input_path)))
def main():
parser = argparse.ArgumentParser(description='SVM Authorship Attribution Method')
parser.add_argument('-r', type=str, help='Path to the main folder of the preprocessed input data')
parser.add_argument('-i', type=str, help='Path to the main folder of a collection of attribution problems')
parser.add_argument('-o', type=str, help='Path to an output folder')
parser.add_argument('-f', type=str, default='visual,char_ngrams,token_ngrams,pos_ngrams,dep_sngrams,token_sngrams',
help='Features [visual,char_ngrams,token_ngrams,pos_ngrams,dep_sngrams,token_sngrams]')
parser.add_argument('--eval', dest='eval', action='store_const',
const=True, default=False,
help='Evaluate results')
parser.add_argument('--grid-search', dest='action', action='store_const',
const=grid_search, default=predict_all_problems,
help='Perform grid search')
args = parser.parse_args()
if not args.i:
print('ERROR: The input folder is required')
parser.exit(1)
if not args.o:
print('ERROR: The output folder is required')
parser.exit(1)
if args.r:
preprocess_input(args.r, args.i)
features = args.f.split(',')
args.action(args.i, args.o, features, args.eval)
if __name__ == '__main__':
main()