

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Control Engineering and Information Technology

Menyhárt Bence

GAME ENGINE SPECIFIC
OPTIMIZATION TECHNIQUES

FOR UNITY

CONSULTANT

Dr. Magdics Milán
BUDAPEST, 2021

Contents

Összefoglaló ... 5

Abstract .. 6

1 Introduction .. 7

2 Optimization goals ... 9

2.1 Recording optimization goals ... 9

2.2 Pre-defined optimization goals ... 11

2.3 Game development pipeline ... 12

2.3.1 Concept .. 13

2.3.2 Pre-production ... 14

2.3.3 Production .. 17

2.3.4 Post-production .. 18

3 Unity .. 20

3.1 About Unity .. 20

3.2 Overview of the workflow .. 23

4 Scripting in Unity ... 25

4.1 C#, the scripting language of Unity .. 26

4.2 .NET in Unity ... 32

4.3 Scripting backends .. 34

4.3.1 The Mono scripting backend ... 34

4.3.2 The IL2CPP scripting backend .. 35

5 Performance analysis in Unity .. 36

5.1 Profiling .. 36

5.1.1 The Unity Profiler .. 37

5.2 Performance testing .. 38

5.2.1 The Performance Testing Extension API .. 40

5.2.2 Performance test examples .. 43

5.3 Benchmarking ... 48

6 Scripting Optimization Techniques for Unity ... 49

6.1 Update manager .. 49

6.1.1 Results .. 52

6.2 Custom properties and hashing of the internal systems .. 54

6.2.1 Results .. 56

6.3 Struct assignment .. 58

6.3.1 Results .. 59

6.4 Hierarchy Optimization .. 60

6.4.1 Results .. 61

7 Conclusion .. 63

Bibliography .. 64

HALLGATÓI NYILATKOZAT

Alulírott Menyhárt Bence, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg

nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat

(szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint,

vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás

megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű

tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető

elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán

keresztül (vagy hitelesített felhasználók számára) közzétegye. Kijelentem, hogy a

benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel

titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik

hozzáférhetővé.

Kelt: Budapest, 2021. 01. 21.

 ...…………………………………………….
 Menyhárt Bence

Összefoglaló

Valós idejű alkalmazások fejlesztésekor az alkalmazás teljesítménye a fejlesztés

során kulcsfontosságú. Sajnos a fejlesztőktől gyakran hiányzik annak a tudása hogyan is

kellene egy-egy teljesítmény csökkenést okozó problémát szakszerűen kezelni, a pontos

okot azonosítani. Játékfejlesztés esetén ezeknek a teljesítmény problémáknak az

azonosítása és kezelése ráadásul még nehezebb, hiszen egy-egy játék rendszerint több

platformra kerül kiadásra valamint több egymástól különböző terület munkáját foglalja

össze mint például a művészet, zene vagy történetmesélés.

Ebben a szakdolgozatban megnézzük, hogy a fejlesztési folyamat során hogyan és

mikor kell meghatároznuk a cél hardvert és milyen optimalizációs célokat érdemes

hozzárendelnünk a projektünkhez. Ezek után elmélyülünk a népszerű játékmotor a Unity

működésében, különös tekintettel a szkriptkörnyezet működésére. A szakdolgozat

folyamán meghatározzuk, hogy a Unity mely részei teljesítménykritikusak vagyis

igényelnek különös figyelmet a fejlesztőktől. Összegyűjtjük milyen típusú eszközök

állnak rendelkezésre teljesítményelemzéshez és hogyan kell ezeket az eszközöket

szakszerűen használni annak érdekében, hogy teljesítmény teszteket és teljesítmény

összehasonlításokat végezzünk. Mindezek pedig azt a célt szolgálják, hogy a

célközönségünk minél minőségibb játékélményben részesüljön. A szakdolgozat vége felé

megvizsgálunk néhány speciális tudást igénylő optimalizációs technikát, majd elemezzük

őket annak érdekében, hogy megértsük mikor és miért teljesítenek jobban egy-egy

esetben.

 6

Abstract

When we are developing real-time applications performance is a crucial part of the

development process. Unfortunately, the knowledge how to handle performance issues

or how to accurately identify the root causes of it are often missing from the developers.

In game development, identifying and handling these issues are moreover even harder

and a broader topic since a game is usually deployed to many platforms and consists of

the work of many fields like art, audio or storytelling.

In this thesis we will learn how and when in the development process we should

define our target hardware and what kind of optimization/performance goals we should

assign to the project. After this we will deep dive into how the popular real-time

development platform Unity works, concentrating especially on its scripting. We will

identify which parts of it are performance critical and therefore need special attention

from the developers. Afterwards we will gather what type of tools are available for

performance analysis in Unity and how to use these tools to properly do benchmarks and

performance tests in order to ensure smooth gaming experience for our target audience.

At the end of this thesis, we will examine some advanced Unity specific optimization

technique and understand why and when they perform better.

 7

1 Introduction

In computer science optimization is a process to modify our system in a way to work

more efficiently by running faster on the target hardware and/or using fewer resources.

This can be achieved at many levels and at different stages of the development process

affecting various stakeholders.

For example, reducing the shadow distance and shadow resolution for objects further

away in a slightly tilted top-down game would dramatically improve the CPU

performance thus directly affecting our end users. This is an optimization that would be

typically made at a later stage in development and have a significant business impact.

On the other hand, making our unit tests, integration tests run faster by optimizing the test

environment will not directly affect our end users but our development team. These kinds

of optimizations are also important and are typically made throughout the project lifecycle

when they reach a certain business impact. Sadly, these types of optimizations tend to be

ignored by the management but they can considerably speed up development iterations

thus should be always take into consideration.

In game development, optimization is an even more broad and complicated process

than in general software engineering. The development pipeline includes the work of

artists, writers, audio engineers, different kind of programmers (user-interface, gameplay,

graphics etc..), testers and many more. We can clearly see that the stack is far larger than

e.g. in web development. If we stick to the shadow distance optimization example above,

a programmer would be satisfied with a decrease of 15-30% CPU load by halving the

shadow distance, but our environment artist would be disappointed after realizing that

outside of a 150 unit range shadows would be culled. So, we the programmers might

require to make compromises with our colleagues when applying an optimization to a sub

system that affect the area of their expertise.

As the above example tries to illustrate optimization in game development is a truly

exciting journey. We can optimize our 3d models, textures, audios, file sizes, the

algorithms that drive our AI, the loading times and many more and probably half of this

does not even depend on the programmers, although the background knowledge why

these are needed is usually within our stack.

 8

To take part in this exciting journey, we will use the popular real-time development

platform Unity. We are going to learn how we can squish out as much performance as we

can from it, via the glasses of a programmer. Unfortunately, many of the principal and

leading engineers in game development are sharing their vast knowledge via blogposts

rather than via official research forums so researching in this topic differs from other areas

of software engineering in general.

 9

2 Optimization goals

Game developers are always pushing the limits of hardware thus optimization is a

crucial part of the development. But how do we decide when we should optimize? What

should an optimization goal contain? How to decide if the proposed solution is in fact

optimal?

Firstly, every optimization goal starts with an observation. It’s usually identified by

a single observation like

“The game freezes for seconds when opening the inventory.”

After this observation, the project lead forwards the observation to the appropriate team.

The commissioned team studies the report then starts to identify where the problem that

can cause this freeze is. This is done by profiling and testing. The developers attach a

profiling tool to the game so they can get results for CPU, GPU, memory, renderer, audio

and storage usage. After analyzing the results, they can then identify which parts of the

software cause this undesired effect. The commissioned team writes down these

observations and proposes an achievable performance goal, then forwards them to the

project lead. After that the project lead prioritizes the optimization goal and according to

its priority the optimization will be applied. The optimization goal is fulfilled if the

proposed performance goal is achieved. As we can see optimization is not about writing

a truly optimal solution but writing a solution that is optimal for the given metric/goal.

That’s why it is important to consult with the appropriate team before setting up an

optimization goal since they have the knowledge to setup an achievable one.

2.1 Recording optimization goals

There are numerous ways to record optimization goals. In agile development they

are usually recorded via the level of stories (performance related ones, if the team

maintains such category). In a requirement driven development (quite uncommon in game

development) they are bounded to performance related requirements. But they can be

simply maintained on a dedicated wiki section as well, the choice is in the team’s hand.

 10

Figure 1: An optimization goal in an agile project using Azure Boards.

We can clearly see the aforementioned four stages in Figure 1. Firstly, an observation

was made and then an issue was created. The issue got moved to the appropriate team’s

backlog1 so it can be investigated and analyzed. After the team finished with

investigating, they closed the issue and assigned an achievable optimization goal to the

problem (recorded in the issue). The project lead accepted the goal created a follow up

story2 (Figure 1) and assigned a priority to it. The Acceptance criteria3 clearly states that

the story can only be marked as verified if the optimization fulfills the goal and it is

verified by performance tests.

1 A list of stories that needs to be done by the team. They are usually ordered by priority.
2 Represents a feature that needs to be done in agile development
3 A story cannot be marked as verified till it does not fulfill all the requirements listed in it

 11

2.2 Pre-defined optimization goals

If you have ever searched for an optimization problem you probably heard about the

following quote from Donald Knuth

“Premature optimization is the root of all evil.”

Sadly, I see this quote quite often misinterpreted and dragged out of context. People of

Stackoverflow, Unity Answers and other forums are tend to quote it mindlessly, and

forget its original context. They usually connect it with the most of the time right fact that

we should implement first then optimize our code (which would be rather implement,

measure and optimize anyway), so any thoughts about optimization before the

implementation make no sense and actually harmful, at least that’s what they suggest.

Although the above statement is mostly true, however, when a game concept is born and

the programmers have the task to architect the foundation of the game (we are not talking

about the engine here but the game’s foundation) they should already have a solid grasp

where the possible bottlenecks and critical parts can be without writing down a single line

of code. Therefore, at the architect phase we should already define some kind of

optimization goals depending on our project specific needs and these are far from

premature, useless and harmful. And now allow me to put the above quote into its original

context

Programmers waste enormous amounts of time thinking about, or worrying

about, the speed of noncritical parts of their programs, and these attempts at

efficiency actually have a strong negative impact when debugging and

maintenance are considered. We should forget about small efficiencies, say

about 97% of the time: premature optimization is the root of all evil. Yet we

should not pass up our opportunities in that critical 3%.

Donald Knuth, Premature Optimization[1]

As we can see it’s about worrying unnecessarily about non-critical parts of our code but

worrying about critical parts is indeed a wise thing to do as the professor suggests.

In conclusion one shall not fall into the pitfall of micro optimizations especially at

non-critical parts, but identifying critical components and defining optimization goals

before the implementation begins is a good strategy.

 12

2.3 Game development pipeline

In this section we are going to take a look at how a game development pipeline

generally looks like, and at what stages we should define the aforementioned optimization

goals.

Game development pipeline describes the process of making a video game from an

idea to a finished product. We throw the basic idea and concept into the start of the pipe,

and at the end of it a finished product will flow out. But what are between these two ends?

The answer is it depends. AAA studios usually have their own pipelines, and they quite

often have different pipelines for their distinct titles. Indies might don’t even follow a

pipeline (although they usually do so unintentionally), which is a common mistake

amongst them. A famous studio like Ubisoft when decides to add one more sequel to one

of their leading title, will probably omit steps from the pipeline like prototyping core

game mechanics since they already know that the prequels were a hit and the mechanics

are great and fit together. On the other hand, an Indie studio should always make a

prototype in order to avoid common mistakes like the game is not even that enjoyable

like on paper or the desired mechanics simply cannot be executed. So, although different

projects and studios might use different pipelines, we can still generalize a rough pipeline

that should be kept for every studio and project, and from which we will be able to define

when and what type of optimization goals we should specify.

A general game development pipeline contains four major phases, namely Concept,

Pre-production, Production and Post-production.

Figure 2: The four major stages of a game development pipeline

Each of these phases contain various topics that need to be “answered”, some of them

can vary from project to project but some of them are project independent.

 13

2.3.1 Concept

The game concept is basically the rough idea of the game e.g. The First Tree’s rough

concept was

“Make a game about a fox with minimalistic graphics and deep narrative storytelling”

Figure 3: The cover of The First Tree. [3]

The rough concept as we can see is usually just a few sentences or paragraphs. It roughly

describes the game and some key elements.

Once the rough concept is defined, we need to specify things like:

▪ What are some of the key features?

▪ Who is the target audience?

▪ What are the target platforms?

▪ Are there any competitors?

Even the concept phase is important from an optimization point of view. Since we

define our initial target platforms here, we already have a basic idea that what type of

limitations we will encounter. E.g. different consoles support different shader models,

mobile games should not be computing expensive otherwise the mobile’s battery will

drain fast. The key features will also give us a hint what type of bottlenecks we might

encounter.

 14

If the game concept is something like

“An RTS game with tens of thousands of units where the player can switch to an NPC to

control it and fight in third person mode”

we should inform the management that the console ports are not viable, and that we need

serious optimizations at AI controllers, character details, and that the target audience will

probably be those who have the latest high-end hardware. Although we will have solid

idea about what type of pre-defined optimization goals we might need, they are typically

collected in the next stage of the pipeline.

2.3.2 Pre-production

Now that the concept is defined, we can start to elaborate in details, and estimate the

financial side of the project too. At the end of the phase the team should produce a

prototype to verify that the game is indeed enjoyable. In this phase we need to specify

things like:

▪ Define the story in details

▪ Define the gameplay mechanics

▪ Estimate the cost of the game

▪ Estimate the production time and the required human resources

▪ Define how to monetize the game

▪ Make a prototype to verify the concept

▪ Create a Game design document 4.

Although it might sound strange to deal with monetization at such an early stage in

development but today’s games are not only monetized via how many copies are sold but

through IAP5, advertises and small content DLCs6.

4 Game design document is a descriptive document of the game. It is maintained and created by the

development team in order to guide the team through the development process. The main goal of the

document is to describe the game’s properties like art style, target audience, characters, story and more.
5 In-app purchases is a common way to monetize free to play games
6 Downloadable content is an expansion to a game in order to extend it with more playable content.

 15

This is also the key phase for pre-defined optimization goals since this is the phase where

we should define them and write them down. We already know the target platforms and

the desired gameplay mechanics so the engineers can collect some of the possible

optimization goals based on this information. Moreover, as mentioned above, the team

should make a prototype to verify the gameplay, which can also be helpful to identify

possible future bottlenecks.

When defining pre-defined optimization goals, most of the time we do not provide

complete solutions but rather guidelines in order to achieve optimal performance by

default on pre-identified critical parts. E.g. if the game heavily depends on AI and physics

and one of the main goals is to make the game available to as broad audience as possible,

we should assign optimization goals like

▪ Research path finding solutions for our use cases to ensure smooth movement.

▪ Setup performance tests for AI and physics common use cases to ensure a stable

frame rate.

▪ Compare the performance of the available physics engines, in order to define

which performs better in our use cases.

Unity for example by default has 4 physics engines

▪ The built-in 3D physics based on an older Nvidia PhysX7 version.

▪ The built-in 2D physics based on Box2D8 engine.

▪ Unity physics, a complete deterministic rigid body dynamics and spatial query

system written entirely in high performance C# using DOTS9.

▪ Havok Physics, an implementation of the Havok physics10 engine for Unity built

on top of Unity physics (It requires a special license for Pro users).

Comparing the above-mentioned physics solutions for our use cases will allow us to build

upon the most optimal solution thus we won’t be limited by the library which we usually

unable to modify but change completely.

7 PhysX is a scalable multi-platform game physics solution supporting a wide range of devices, from

smartphones to high-end multicore CPUs and GPUs. PhysX is integrated into some of the most popular

game engines, including Unreal Engine, Unity3D and Stingray.
8 Box2D is an open source 2D physics engine written by Erin Catto
9 Data-Oriented Technology Stack, a solution by Unity to take advantage of modern multicore processors
10 Havok physics is an industry leading complete physics solution for games and modelling software

 16

Now let’s look at an example where we did not set up these pre-defined optimization

goals. We are at the middle of the production phase, when we get reports that the default

built-in 3D physics’ collision detection solution is producing undesired stutters in our fps.

After identifying where the exact problem is we conclude that we are unable to solve it

without the help of Unity. Sadly, we do not have $100,000 to buy Unity’s source code

and change the implementation, so we have to find a better alternative physics solution

than the built-in one. After benchmarking and measurements, we conclude that Unity’s

new DOTS based solution will be sufficient for us, however DOTS requires ECS11 as

opposed to our component and object-oriented view. Unfortunately, converting all of our

already finished GameObjects and Components to Entities to fully utilize DOTS will

require quite some time.

As we can see, in the above situation the development time have to be extended

because a critical component that we based on have to be completely changed to a more

performant one. This will cause delay, increase of production cost and other undesired

effects. The below graph illustrates why it is important to pre-identify possible critical

components at an early stage in development from a financial point of view.

Figure 4: The cost of change in perspective of time

11 Entity Component System, is a data-oriented design view opposite to Unitys’s standard object-oriented

one with GameObjects and Components

 17

2.3.3 Production

Production is the longest phase in the development pipeline. This is the phase where

we bring the project to life. Most of the well-known titles are in production phase for

years. In this phase

▪ The level designers design the environment in a way that it perfectly fits into

the gameplay.

▪ The programmers write numerous gameplay scripts, engine extensions and

editor scripts to help their team iterate faster.

▪ Audio engineers record and create unique sounds for every detail in the game.

▪ Artists are creating characters, environmental props, and unique textures to

fit our art style.

▪ Animators are putting life to these lifeless polygon monstrosities.

▪ And finally, the project lead trying is to coordinate the work of all these

awesome and talented people.

And we did not mention voice actors, actors, script writers, composers and more. As

we can see, this is the most exciting and hardest part to coordinate and iterate. It is also

quite common that months worth of works have to be undone because it does not fit into

the bigger picture. This is a quite frustrating phenomenon that can deeply demoralize our

team, so preventing it with proper planning and communication is crucial.

When the team is finished with this phase a fully playable alpha or beta version is

produced depending on the internal pipeline and testing in the large can happen. This is

also a good phase for marketing because we will have plenty of nearly full done features

to be shown.

From an optimization point of view, we will define a plenty of optimization goals in

this phase. This is also the phase where we usually try to set up a more precise hardware

requirement for PCs, and mobiles. We have a playable alpha or beta version so we can

measure the game’s performance on different hardware. We can also collect information

from alpha/beta testers about the game’s performance. On this collected information we

will then define new optimization goals and later, usually in the post-production phase,

we will then define the exact minimum/recommended hardware requirements.

 18

2.3.4 Post-production

In this four-phase development pipeline post-production contains both just before

launch and after launch post-production.

Figure 5: A seven-phase game development pipeline where post-production is separated into

three phases. Pre-launch, launch, post-production. [4]

Here any type of big change is discouraged, highly not recommended and usually a

sign of a disaster. The first half of this phase is about applying the final touches to our

game before launch. At this stage

▪ The marketing team is working hard to market our game

▪ Some of the team members are adding small requested features (usually

QoL12) that came up while beta testing

▪ Some of them are optimizing different parts of the game for smoother

gameplay experiences

▪ But most of the development time is mainly spent on bug fixing

12 Quality of Life improvements usually make the gameplay more ergonomic and user-friendly

 19

After the game is launched post-production should still go on because

▪ The game might need emergency patches (fails to launch, game breaking

bugs etc.).

▪ The game needs patches that apply balance and general bug fixing.

▪ The game might even get new contents.

In some cases, post-production is a “never-ending” process. E.g. in an MMORPG13

after launch the core game will be in post-production till the servers finally get shutdown.

An MMORPG needs continuous support for accounts, moderation, in-game bugs and

more. The developers also work actively to make the servers feel like a living world by

adding seasonal events, small content patches and more.

From an optimization point of view, we should have only minor optimization goals.

However, this is the phase where we should define precisely the minimum/recommended

hardware requirements that will be printed on the “boxes”.

13 Massively Multiplayer Online Role-Playing Game is a genre that combines RPG elements with a vast

number of concurrently online players

 20

3 Unity

3.1 About Unity

Unity is a popular real-time development platform developed and maintained by

Unity Technologies. It is mainly used for game development but in the past three years

the industrial area showed serious interests towards it as well. The real success of Unity

is in its portability (Figure 6), ease of use and the vast amount of tutorials and education

materials made by its community. In 2019 53% of the top 1,000 grossing mobile games

and in overall 50% of all games were powered by Unity.

Figure 6: The supported platforms of Unity 2020. Even though the next-generation consoles are

not yet released to the public Unity is already supporting them. [5]

Figure 7: Some of the well-known titles made with Unity

It is a common practice that a game engine specializes for a genre(s). E.g.

HeroEngine specializes for MMORPGs and RPGs, CryEngine and Frostbite mainly

specializes for first-person shooters and Cocos2d-x is exclusively developed for making

2D (and nowadays 3D) mobile games. However, Unity is an exception to this.

 21

This can be clearly seen in Figure 7 where Cuphead is a 2D platformer, Fall Guys is a

physics-based 3D battle royale platformer, Escape From Tarkov is a multiplayer FPS14

and Hollow Knight is a 2D action-adventure game. All these games require different

technology stack yet Unity can offer them all. Some of the main features of the engine

includes:

▪ Animation and cinematic tools
▪ Asset store
▪ VR15, MR16 and AR17 support
▪ Editor

▪ Customizable Editor UI
▪ Package Manager – NPM and NuGet like package management for editor extensions
▪ Native import of well-known software file formats – Photoshop, Maya, 3dsMax etc.

▪ Programming Tools
▪ IDE support – Visual Studio, Visual Studio Code, Rider
▪ Unity Test Framework – A test framework for Unity
▪ Unity Profiler – A profiler tool for performance analyzation
▪ Detailed API Documentation

▪ Rendering
▪ Various Render Pipelines – Different render pipelines for different requirements
▪ Visual Shader and VFX editor
▪ Post-processing stack

▪ Multiplayer and Networking
▪ Navigation and Pathfinding
▪ Physics
▪ User Interface

▪ Various UI solutions for both in-editor and in-game UI scripting
▪ 2D

▪ Sprite editing
▪ Layer sorting

▪ World Building
▪ Terrain System – A highly efficient heightmap based terrain system with various tools
▪ Polybrush – Allows to blend textures and sculpt meshes directly in the editor
▪ ProBuilder – A 3D modeling and level design tool for fast prototyping

14 First-person shooter is a game genre centered on weapon in a first-person perspective, so the player

can experience the action throught the eyes of the protagonist
15 Virtual Reality is a type of application which simulates an environment around the user
16 Mixed Reality is a type of application which combines the simulated environment with the user’s own

environment allowing interactions between them
17 Augmented Reality is a type of application which projects part of the digital world over the real world

 22

The aforementioned list of main features supposed to illustrate how versatile the Unity

engine is. However, it is important to point out that these features are collected from the

LTS version of Unity 2019. Unity releases four major builds every year. Three tech

releases and one Long-term support (LTS). (This is going to change with Unity 2020 and

up, where there will be three major releases, two tech and one LTS). Tech releases are

supposed to show off new completed features to the users while LTS releases are

maintained for a longer period of time than tech releases, however they contain no new

features just usability and stability improvements. Between the tech releases there might

be breaking changes18, deprecated APIs or completely new features thus, every serious

project should use the LTS versions of Unity. In this thesis we will use the LTS version

of Unity 2019.

Unity offers four type of plans for developers namely Personal, Plus, Pro and

Enterprise. Personal and Plus have restrictions on annual revenue meaning that only those

are eligible for using them that meet those criteria. Personal and Plus also have limitations

on official support services by Unity like collaboration tools, build servers and more19.

Pro have little to no restrictions and Enterprise is basically an upgraded Pro license for

bigger companies with dedicated contact to Unity. It is important to note that even the

free Personal license has no restrictions on the engine itself meaning that even the smallest

team can achieve anything without spending a single penny on Unity. The only drawback

of the Personal license is that the splash screen20 have to contain the Unity logo.

In this thesis we will use the Pro version of Unity.

18 A type of change in a software system that potentially causes other parts of the system to fail.
19 https://store.unity.com/compare-plans
20 The screen that is shown when the Unity app loads

https://store.unity.com/compare-plans

 23

3.2 Overview of the workflow

Unity’s main workflow revolves around GameObjects and Components.

GameObjects are the actors or we can think about them as container of Components while

the Components define how a GameObject behaves in the scene. This workflow is

extremely convenient and easy to understand, the developer just creates a GameObject,

adds some Components to it then these will define how the GameObject behaves in the

scene. E.g. adding a Rigidbody component to a GameObject will allow it to take part in

physics calculations and if the developer clicks on play, the GameObject will instantly

start to fall according to the laws of gravity. This is the main workflow of Unity. However,

since Unity 2018 a new workflow was introduced called DOTS. DOTS is pushing Unity

towards a data-oriented design view instead of the standard object-oriented one. Unity

suggest that we should organize our code around data and the way how it is stored in

memory. This results in an extremely performant code that can fully harvest the

capabilities of modern hardware, via caching data efficiently. E.g. when a developer

wants to iterate over all the zombies in the game in order to move them the CPU will load

a bunch of ZombieController scripts into its cache. The problem is that ZombieController

contains not only the position of the zombie but also other various properties like health,

stamina, behavior type and attack type. Obviously for movement translations the only

relevant property is position, yet the CPU loads all the irrelevant properties as well thus

wasting our precious and extremely fast L1, L2, L3 caches.

Figure 8: The difference between Object-oriented and Data-Oriented design [6]

 24

As we can see in Figure 8 object-oriented design uses an unoptimized data layout which

brings irrelevant data (red) into the CPU cache thus it has to use the slower main memory.

On the other hand, data-oriented design uses an optimized data layout that only brings the

relevant data into the cache resulting in a half-empty CPU cache which is ready to cache

more “zombies”. What the developers at Unity do since 2018 is that they are rewriting

the core of the engine to harvest the full power of data-oriented programming. However,

in spite of the promising results and performance boost, by default, we are not going to

use this approach in this thesis because most of the DOTS features available to the

developers are still in early preview thus expected to change frequently and significantly

while containing quite many bugs according to my experiences.

Figure 9: The packages of DOTS. [7]

 25

4 Scripting in Unity

Scripting is an essential part of game development. Its main purpose is to decouple

the game engine layer from the game logic layer, therefore allowing the management of

both layers independently. In order to fully understand how scripting works in Unity we

will look into the following topics:

▪ C#, the scripting language of Unity

▪ .NET in Unity

▪ Scripting backends.

Unity is a C/C++ engine, which means that most of the inner functionalities are

written in these two languages. However, Unity’s scripting language is C#, which means

that the game logic will be probably written entirely in C#. This tends to confuse

newcomers since interactions with the Unity API happen via C# objects (wrapper classes

around the native C/C++ libraries), they think that the engine itself is written in C# as

well. So, it is essential to know that this is not true and this knowledge is especially crucial

if our task is to optimize parts of our scripting logic. Unity’s source code is also

proprietary which means that any problem that is on Unity’s side have to be solved by

them thus the developers are sometimes depending on the Unity team. Although, in 2018

Unity Technologies decided to release the source code21 of their .NET assemblies under

a reference-only license22 which helped to find many bugs in these assemblies via the

help of the community, we still don’t have much insight into the inner mechanisms of the

engine (C/C++ part). Moreover, Unity does not accept pull requests or issues on the

GitHub repository which means that every bug has to be reported via Unity’s official bug

tracker called the Unity Bug Reporter.

But why Unity used C# and not C++ which would require no wrapper classes around

the engine libraries thus avoiding language interoperability or why did they not choose

Java, an older and library rich language that is cross-platform by default or another C#

like language? In order to answer these questions first let’s see what C# is.

21 https://github.com/Unity-Technologies/UnityCsReference/tree/2019.4
22 Reference-only license means for the sole purpose of inspecting functionality to understand or improve

performance of your games, applications, software, or other content developed with the Unity Engine.[8]

https://github.com/Unity-Technologies/UnityCsReference/tree/2019.4

 26

4.1 C#, the scripting language of Unity

C# is a modern general-purpose, multi-paradigm23 programming language. It has its

roots in the C family of languages and usually shares similar syntaxes with them. C# is

mainly an object-oriented and component-oriented programming language. It aids these

paradigms on a language level making it a natural language in which to create and use

components. Since its origin, C# has added features to support new workloads and

emerging software design practices like functional, generic or dynamic programming,

making it a truly flexible programming language. C# was developed as one of the

programming languages for the Common Language Infrastructure (CLI) which is a

standardized (ISO24/ECMA25) open specification developed and maintained by Microsoft

that allows the use of different languages on different platforms without rewriting the

code for that specific platform making CLI a platform agnostic solution. This thesis is too

short to fully introduce C# and all of its features so we will concentrate on the areas that

make it a perfect choice for game development.

In the introduction of the parent section we asked a simple yet important question

“Why Unity uses C# instead of C++?”

A short answer with the primary reason to this question would be “because of speed”.

Yes, C# is faster than C++, usually by around 3-12 months on larger projects. Jokes aside,

C# is an extremely productive language and in game development iteration time is a

crucial part of the development process. Many of the AAA games have an extremely long

development time. E.g. the new “The Elder Scrolls” sequel is expected to be in

development for six years. This means that for six years the studio will make no profit

from the sequel only burn money on it. The cost of an engineer is not cheap, if we have

the ability to boost their productivity just by changing the language they use that would

be quite beneficial from a financial point of view. Remember that every game is a

business product. The goal is to make an enjoyable and profitable game from as low cost

as possible and generally C# will help us more to achieve this than C++. Let’s see why.

23 Programming paradigms are a way to classify programming languages based on their features.

E.g. C# is an imperative, declarative, functional, object-oriented and component-oriented language.
24 International Organization for Standardization
25 European Computer Manufacturers Association is a standards organization for IT related fields.

 27

One of the main reasons that programming in C# is generally more productive than in

C++ is that C# is less error prone which means less debugging and bug fixing thus the

programmers can focus on features rather than on bugs. This reliability comes from

different features of the language and its runtime.

Firstly, C# is a managed language in contrast to C/C++. Managed languages are

languages whose execution are managed by a runtime. In case of C# the runtime is called

the Common Language Runtime (CLR). The CLR provides various services that makes

the development process more productive. One of the most important services of the CLR

is the automatic memory management. The CLR provides a Garbage Collector (GC)

which takes care of releasing objects that are no longer used by the program. Garbage

collectors nearly fully eliminate the need of manual memory management thus nullifying

one of the most common sources of bugs called memory leaks. E.g. according to

Microsoft and Google 70% of all security bugs are memory safety issues[13].

Figure 10: Microsoft’s statistics about memory safety. According to Google at least 30% of the

memory safety issues are “use-after-free” memory leaks [13]

Although, Figure 10 shows only the security related issues, we can safely assume that

memory related bugs are quite common around other types of bugs as well. C# also has

other memory related security features like bound checking and enforcing variable

initialization. In C++ it’s the programmer’s responsibility to assign a value to a variable

before the first use. From a performance perspective this is good, (micro optimization

wise) however it can cause undesired behaviors if the assignment is forgotten before the

first usage. C# compilers enforces variable initialization through static checking

preventing yet another common source of memory related bugs.

 28

Another critical part where C# can outshine C++ is compilation time. Gameplay and

general game scripting needs fast feedbacks about changes but C++ compilation takes

time. One of the main problems when compiling a C++ project is the handling of header

files. Every single compilation unit requires several header files to be loaded, parsed and

compiled. This can produce a huge amount of work in case of big projects. C# on the

other hand does not have header files. In addition to this C#, code compiles not to machine

code but to an intermediate language called the Common Intermediate Language (CIL)

(formerly known as MSIL26). These compiled codes will be then stored in assemblies

(files with a .dll or .exe file extension). When the application is started the CLR loads

these assemblies and uses a just-in-time (JIT) compiler to translate the CIL into machine

code that can be directly executed on the underlying architecture.

We can illustrate the boosted productivity via compilation time by an extremely

simple example. Let’s say our team consists 10 gameplay developers who test their code

changes via the editor play mode 10 times a day (a generous underestimation). They are

working on a DLC to a huge scale AAA game with an enormous C++ code base. The

expected production time is estimated to be a year. The compilation of the scripts on

average takes around 60 seconds regardless of where and what changes were made.

Again, this is a quite generous underestimation for compilation time for large C++

projects but let’s assume that the team uses the best practices to reduce compilation times

for their project. (Entering play mode also require some time depending on the project

but since it can highly vary from project to project, we exclude it from the calculation.)

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

10 ∗ 10 ∗ 230 ∗ 60 = 1 380 000 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Our gameplay developers waited for 1 380 000 seconds just for compilation. 1 380 000

seconds is roughly 384 working hours. There are 8 hours in a working day. (Let’s ignore

the fact that many AAA studios basically requires the employee to do overtime.) This

means that each developer individually spent nearly 5 working days waiting for the

project just to compile. C# projects on the other hand usually compile at least twice as

fast as C++ projects, but 3-4x+ faster compilation times are not rare either. This would

mean that if the game were scripted using C# each developer would only wait 2.5, 1.5 or

26 Microsoft Intermediate Language

 29

less than just 1 day for compilation overall. This might sound great but still not the 3-12

months desired productivity boost. But we must not forget that this is just compilation

time in a one-year span only (with extremely generous underestimations).

In the introduction of the parent section there was another important question that is

still unanswered.

“Why did they not choose Java an older and library rich language that is

cross-platform by default or another C# like language?”

The answer to this question is not a trivial one. Several factors could have influenced

Unity’s initial decision like target platform support, licensing of the language etc. In this

thesis we will concentrate on the language, framework, and libraries that could have

influenced Unity Technologies’ decision.

C#, as mentioned above, is a managed language which also uses a GC for automatic

memory management. This comes with many safety and convenience features, however

there is one big problem, garbage collection takes time. E.g. a competitive first-person

shooter game made with a GC backed language runs at 144 FPS27 then suddenly the FPS

drops to 72 for a split second. This is a common problem and usually indicates that the

game allocates too many objects on the heap28. Everything that gets allocated on the

managed heap the GC will take care of. This means that if we allocate too many objects

on the managed heap the GC will have to run frequently thus dropping our frame rate.

Luckily C# can help us to avoid unnecessary heap allocations in various ways. C#, unlike

Java, distinguishes two main types from the perspective of the memory. Reference types

and value types. While reference types are always allocated on the heap29 value types are

allocated on the stack30 with some exceptions. The two most important exceptions when

a value type is actually allocated on the managed heap are

▪ The value type is a field of a class.

▪ The value type is boxed31.

27 Frames per second. In Unity fps can be calculated by using the Update message.
28 Heap is the portion of the memory where the dynamically allocated memory resides.
29 Java compilers might allocate reference types on the stack if they can prove that the reference won’t

“escape”. The technique is called escape analysis.
30 Stack is an array of memory in a LIFO (Last In First Out) structure.
31 Boxing is when the CLR wraps a value type inside a System.Object instance and stores it on the heap.

 30

But why is it good that value types are stored on the stack rather than on the managed

heap? Because of efficiency. Deallocating and allocating on the stack are extremely cheap

compared to deallocations and allocations on the managed heap. Moreover, types

allocated on the stack are not subject to the GC. Since value types are quite commonly

allocated on the stack, by using them cleverly, we can take a lot of pressure off from the

GC. The problem is that many languages only support this behavior on primitive types32.

Luckily, C# supports structs that happen to be value types that support encapsulation of

data and related functionalities therefore allowing developers to define class like

behaviors. There are some golden rules on when and how to define structs. E.g. it is

advised to define them as immutable structs because of their value type semantics.

According to Eric Lippert former designer of the C# language

“Mutable value types are evil. Try to always make value types immutable.”[14]

Since C# 7.2 the language have an extended syntax in order to give opportunity to enforce

immutability and allocations to stack only.

Now let’s see a common usage of these structs in Unity. In Unity every GameObject has

a Transform component. It is impossible to create a GameObject without it, or delete it

from an existing one. One of the most common scenarios in a Unity app is movement

translation.

The above method moves up the current GameObject by one unit. In Unity Vector3 is a

struct. Every time transform.position is called Unity queries the current position of

the GameObject from the C/C++ part of the engine. If Vector3 was a class it would mean

that every time we query the position, a Vector3 object would be allocated on the

managed heap. In case of an Update loop hundreds of instances of this class would be

instantiated in every second, slowly pressurizing our GC. However, since Vector3 is a

struct it gets allocated on the stack and when we leave the scope of the method it gets

32 int, long, float, double, bool, char, enum etc.

public void MoveUpByOneUnit()
{
 Vector3 pos = transform.position;
 transform.position = new Vector3(pos.x, pos.y + 1, pos.z);
}

 31

deallocated cheaply without the need of the GC. This type of behavior is especially crucial

in game development and generally optimization-wise.

In the above movement translation example transform.position is a property.

However, there is one special thing about this property. If we look into the Transform

component’s source code, we will see an extern keyword in the property declaration.

The extern keyword indicates that the method is implemented externally. In case of Unity

this means that this method is implemented internally in the C/C++ code base. This leads

us to another reason why Unity settled with C# rather than with another managed

language like Java. C# and the .NET ecosystem have a strong native interoperability. C#

was designed for cross-language support. It needs no third-party solutions for

interoperability the CLR and System libraries provide all the necessary resources for

cross-language support. C# supports interoperability with language level syntaxes. The

framework provides marshalling33 services, various interoperability solutions like

Platform invoke or shortly P/Invoke and convenient attribute syntaxes for library

definitions. These services are extremely useful in game development. They make it

possible to use C/C++ libraries from a managed code therefore allowing us to move

performance critical codes outside of the managed environment or just simply allowing

us to use popular libraries/services that are written in another native language. E.g. Epic

Games, the company behind Unreal Engine made a so-called Epic Online Services. These

services provide match making, server hosting, app store and other various services.

However, these are all written in C++. Luckily this is no problem in case of C# and .NET.

Epic Games just wrote a wrapper library around the public interfaces using one of the

interoperability solutions just like Unity wrote wrapper classes around the engine’s public

interfaces. This is a common technique and many of the third-party libraries for Unity are

actually C++ libraries with a C# wrapper layer.

33 Marshalling is the process of transforming an object’s memory layout into another suitable memory

layout for transmission. In C# it is usually reffered to converting managed types to unmanaged ones.

// Position of the transform relative to the parent transform.

public extern Vector3 position { get; set; }

 32

Although interop calls are extremely useful and they are quite crucial in game

development they do have a significant overhead compared to simple method calls.

E.g. P/Invoke has an overhead of 10-30 x86 instructions per call in contrast to a simple

call instruction [15]. In addition to this, marshalling can also add additional overheads to

this depending on the data that needs to be marshaled. Luckily in the above example

Vector3 only contains blittable34 types therefore Vector3 requires only minor

marshalling. A sequential struct layout attribute is needed and our Vector3 struct can be

marshaled as a C structure.

4.2 .NET in Unity

.NET is a developer platform made up of different kinds of tools, programming

languages (C#, F#, Visual Basic) and a vast amount of libraries for building any kind of

application. There are various implementations of .NET and every implementation of it

is actually the implementation of the Common Language Infrastructure (CLI).

▪ .NET Framework

The first implementation of .NET. Although .NET Framework is platform

independent in theory it is only implemented on Windows thus it only

supports Windows operating systems.

▪ .NET Core

.Net Core is the cross-platform implementation of the CLI and the successor

of the .NET Framework. Unlike .NET Framework, it is open-source and

maintained and developed by Microsoft via the .NET Foundation.

(Unity is part of the .NET Foundation)

▪ Mono

Mono is an open-source cross-platform implementation of .NET Framework.

Mono can be run on platforms like Android, iOS, tvOS, Linux, Windows,

macOS, PlayStation 3, PlayStation 4, Xbox 360, XboxOne, Xbox Series X,

Wii and many more. Mono does not support all of .NET Framework’s API

but the core API is fully supported.

34 Blittable types are data types which memory representation is the same in both managed and unmanaged

memory therefore requiring no marshalling. Some well-known blittable types are byte, int, float, double.

 33

The above three are complete frameworks. Although if a developer goes into Unity’s

Project settings under the Player subsection there will be two selectable API

Compatibility Levels, .NET 4.x and .NET Standard 2.0 and the Scripting Backend which

is set to Mono as can be seen on Figure 11.

Figure 11: The Player settings in Unity’s Project Settings.

This can be confusing for inexperienced .NET developers since .NET Framework

versions are sometimes just called e.g. .NET 4.7 etc. The keyword(s) here is the API

Compatibility. While Mono is the framework the API Compatibility Level defines the

available libraries. .NET Standard 2.0 is not a CLI implementation and a complete

framework, it is just a specification of .NET APIs that are available on all .NET

implementations. Perhaps a picture tells more than a thousand words. (Figure 12)

Figure 12: The purpose of .NET Standard.

The general rule of thumb in Unity is to use .NET Standard 2.0 and only switch to

.NET 4.x whenever the project needs specific API(s) defined in it. The reason for this is

because .NET Standard 2.0 have a smaller library which compiles faster and produces a

smaller build size that is quite useful for mobile applications.

 34

In conclusion Unity uses Mono as it is the framework that provides them

cross-platform support on a high range of devices and .NET Core does not yet supports

that many platforms as Mono. However, in November 2020 .NET Core will be merged

with .NET Framework and will be developed as an open-source cross-platform

framework with the name .NET. (First version will be .NET 5.) In 2021 .NET will be

merged with many of the functionalities of Mono (.NET 6) therefore Unity sooner or later

should switch to .NET (Core). .NET Core is such a powerful open-source project that

already some of the principal engineers of Unity tried to port the scripting backend to

.NET Core. [17]

4.3 Scripting backends

Scripting backend is a Unity term for the framework that will compile and execute

our code. In Unity 2019 there are 2 scripting backends. We are already familiar with the

one called Mono and the other one is named IL2CPP (Intermediate Language to C++).

IL2CPP is a Unity developed scripting backend. It contains an AOT35 compiler and a

runtime library to support the virtual machine. Both scripting backends have some

advantages and disadvantages.

4.3.1 The Mono scripting backend

The Mono scripting backend is the backend of the editor. There is no way to use

IL2CPP when testing a game via the editor. This might sound inconvenient when the final

builds will be all compiled via IL2CPP but as we talked about it earlier Mono provides a

seriously faster iteration time than IL2CPP since compilations are much faster with it

(involves no C++ compilation and because it only gets compiled to an IL). Mono as a JIT

based scripting backend also supports dynamic C#/IL code generation at runtime.

However, that are many cases where Mono is not a suitable scripting backend. There are

some platforms that do not allow runtime code generation therefore any JIT based

managed code will be prevented to execute on the target platform. In this case an AOT

compiler is required. A good example for this are iOS devices.

35 Ahead-of-time compilers compile the code into static libraries that can be then directly executed on the

target architecture without the need of dynamic compilation like in the case of a JIT compiler.

 35

4.3.2 The IL2CPP scripting backend

IL2CPP is Unity’s own scripting backend first introduced in Unity 5. Since then it

has undergone serious changes and now it is one of the main scripting backends of Unity.

Some of Unity’s supported platforms can only be shipped with IL2CPP. IL2CPP’s

biggest advantage is in its configurability, framework independent GC and in its

performance. Although IL2CPP is generally faster than Mono there are some cases and

platforms where it can be considerably slower.

IL2CPP first compiles IL code from the scripts assemblies into C++ then compiles

these to native code which can be directly executed on the target architecture, this can be

seen on Figure 13. Libil2cpp is the name of the runtime library (e.g. this contains the

GC) and IL2CPP.exe is the compiler. The compiler is an AOT compiler.

Figure 13: The compilation process of IL2CPP [18]

It is important to point out that the standard libraries of .NET are not transpiled to

C++, mscorlib.dll, System.dll, etc. are the exact same code used for the Mono scripting

backend. The converted C++ code currently uses the Boehm-Demers-Weiser garbage

collector.

IL2CPP has some restrictions on reflection36, C# exception filters and on some other

minor features. Unity Documentation has a detailed page dedicated to these scripting

restrictions.37

36 Reflection is a process to obtain information about loaded assemblies and the types defined within them
37 https://docs.unity3d.com/Manual/ScriptingRestrictions.html

https://docs.unity3d.com/Manual/ScriptingRestrictions.html

 36

5 Performance analysis in Unity

Now that we are familiar with common performance issues and considerations in

game development and we know how to approach and assign optimization goals to them

and that we have also become familiar with the scripting ecosystem in Unity it’s time to

talk about how to handle these in practice inside Unity.

In this section we will discover what types of tools are available for performance

analysis in Unity, how to use these tools and identify the bottlenecks and hot spots38 with

the help of them. Then we will discover what types of tools are available in Unity to write

performance tests and benchmarks in order to maintain performance requirements or just

to select the most optimal solution to a specific problem.

5.1 Profiling

Profiling in computer science is a form of dynamic program analysis where we

measure different parts of our application. Whenever a performance degradation is

observed a performance profiling should take place. It is a common mistake amongst

rookie programmers that only assumptions are made thus it can happen that a subsystem

gets optimized that is not even involved in the root cause. It is needless to say that this

approach is highly inefficient. There are several tools available in Unity to help us identify

performance related issues like the

▪ Profiler

▪ Memory Profiler

▪ Frame Debugger

▪ Physics debugger.

Moreover, there are other tools available that can be used with Unity like Visual Studio’s

profiler or for platform dependent optimizations the corresponding tools. E.g. for Android

the Snapdragon Profiler.

In this thesis we will concentrate on Unity’s Profiler tool and on the official packages

made for performance analysis like the Performance Testing Extension.

38 A hot spot in computer science is most usually defined as a region of a computer program where a high

proportion of executed instructions occur or where most time is spent during the program's execution.

 37

5.1.1 The Unity Profiler

The Unity Profiler is the most commonly used profiling tool for Unity applications.

It can be connected to devices over the network or to devices connected to the machine

physically allowing the developers to analyze the application on their release platforms.

The profiler can be also connected to the editor allowing analysis of in-development

features. The profiler gathers and displays data on the performance of the application such

as CPU, GPU, memory, renderer, audio, physics, network etc. The profiler displays the

gathered data in both text and charted view as well.

The Profiler should be the first tool for performance related issue when developing

with Unity. It has four main windows as it can be seen on Figure 14.

Figure 14: The Profiler window

1st is the Module window. We can select here which module we would like to inspect.

(CPU, memory, rendering etc.) 2nd is the Profiler area window where we can see the

measurements of the modules frame by frame in a charted view. 3rd is the Overview

window where we can see a detailed breakdown of each module. Currently the CPU is

inspected. 4th is the Object display window where we can get an information about the

objects that are related to the inspected element. As we can see currently the player loop

is selected therefore there are no user related objects displayed in this view.

 38

In this thesis we will mostly use the CPU module since scripts are most of the time

bottlenecked by the CPU. The CPU usage window is measured frame by frame. Since

game engines are working in so called game loops this is a perfect fit for performance

analysis. We can inspect where and what the CPU was working on in each frame. The

Overview window contains all the related methods and functions that were executed in

the currently selected frame. On Figure 14 the CPU’s work was mainly in the Editor

loop39. The reason for this is that the picture is from an empty project containing only a

camera and a directional light. But we can see that the CPU spent some time rendering,

sending mouse events however, most of the work falls into the Others category40.

It is important to note that profiling through the editor only gives approximate results

especially if the target device is not a PC or Mac but a console or a mobile device. So,

profiling through the editor is mostly useful when there is a non-platform dependent issue

that requires no exact measurements, an in-development feature is analyzed or the target

platform is the platform where we run our editor and the editor overhead is not expected

to add a significant distortion to the results. E.g. 10 000 objects could significantly affect

both the editor and the player since the editor would need hierarchy updates, gizmo draws,

scene view draws etc.

5.2 Performance testing

It is a common mistake that after a performance degradation observation the

component that was causing the degradation gets optimized and then later in the

development process the problem emerges again. This can be easily prevented by

performance testing. After solving a performance issue there are some cases where we

should verify the optimized component via performance tests in order to avoid a common

scenario in which a change to the component falls its performance back below the

accepted minimum. E.g. if a level loading issue emerges which makes level loading way

too long and a performance/optimization goal was already defined for the problem we

should ensure that the goal will be kept through the development process. If the goal is to

keep loading times under 2 seconds on the target platform then this should be verified

39 Editor loop in the profiler is the editor related overheads like drawing the hierarchy, inspector view etc.
40 The Other category in the CPU module are mostly engine related updates, like coroutine manager

updates, render pipeline handlers etc.

 39

through performance tests. Performance testing is also useful to provide information

about the capabilities of our game’s performance, so later we can fine tune application

settings based on the results or simply compare previous results in order to define what

changes affected our performance in what way.

Generally, performance testing does not mean that the results should be asserted.

Performance testing has many branches like load testing41, stress testing42 and

configuration testing43 and none of this includes assertions generally. Their results are

monitored and recorded but mostly analyzed manually. In this thesis we will however

write asserted performance tests using the AAA44 pattern. The reason for this is that most

of the traditional performance test branches cannot be applied to game development. E.g.

we don’t do traditional stress testing since a low response game might work but it is

unacceptable from the point of the user. On the other hand, writing asserted performance

tests can automatically enforce previously set performance/optimization goals or just a

reasonable performance requirement.

Sadly, performance testing is widely ignored in game development which can be seen

even in AAA titles, however they are more common around indie titles. A good example

to this is PlayerUnknown’s Battlegrounds also known as PUBG. It was an indie game

that gained massive popularity amongst players in a short amount of time. The huge

player base had an ample set of system configurations and because the game already had

various performance issues this just made things worse. Most of the performance issues

were only fixed when the software giant Microsoft lent developers to PUBG in order to

prepare the game for the Xbox release and did a comprehensive performance testing in

the process.

In Unity we can use the Performance Testing Extension for Unity Test Runner for

both benchmarking and various performance testing.

41 The process of putting an expected load on the system and then measuring its response.
42 The process of intense testing in order to determine the stability of the system. In game development

mostly servers are stress tested and not the game itself.
43 The process of testing the performance with various hardware and system configurations.
44 Arrange Act Assert is a software industry standard testing pattern. In arrange we setup the test’s

prerequisites, in act we do the main action from the point of the test and finally in the assert section we

check if the results are indeed the expected results. This pattern greatly helps readability.

 40

5.2.1 The Performance Testing Extension API

The Unity Performance Testing Extension is an Editor package that provides an API

and test case decorators to make it easier to take measurements and samples of Unity

profiler markers outside of the Profiler or just to record custom measurements. The

Performance Testing Extension is intended to be used with and extend the Unity Test

Framework 45 (UTF). UTF’s structure is similar to any Unit testing framework46 therefore

we are not going to detail its usage. UTF is built on top of Nunit47.

The Performance Testing Extension (PTE) extends the UTF with one important

[Performance] attribute. Every test that is marked with this attribute will be initialized

as a performance test. The attribute is intended to be used with UTF’s [Test] and

[UnityTest] attributes. The former one is for non-yielding tests typically for those that

execute under one frame while the latter one is for yielding tests that are executed across

multiple frames. The PTE API provides various methods to take different kinds of

measurements in our performance tests. It provides methods for warmups48, iteration

counts, GC usage, custom measurements and more.

In order to view the results of a performance test, the developer first needs to open

the Unity Test Runner (Window > General > Test Runner). From here all the available

tests can be run and inspected. However, there is no way to distinguish a performance test

from the other types of tests here (unit, integration, component etc.) so a clear folder

structure is advised for easier identification. When a performance test is executed the Test

Runner will show a Test Summary. The summary consists of different type of

information. Firstly, the summary includes every sample group’s aggregated samples

such as median, min, max, average, standard deviation, sample count, count of zero

samples and sum of all samples. Secondly, the summary includes important information

45 The Unity Test Framework enables developers to test their code in both Edit and Play Mode and also

on target platforms such as Standalone, Android, iOS, etc.
46 Unit testing is a software testing method where individual areas of the software are tested.

https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019
47 A unit testing framework for .NET, initially ported from JUnit. NUnit is part of the .NET Foundation
48 Warmup is mostly important in JIT based environments where the compiler can optimize the execution

at runtime. Warmups can also help in non-JIT based environments to setup an optimal CPU cache etc.

https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019

 41

about the application and its player settings, hardware information and editor information

if available.

Figure 15: The Test Summary of a performance test inside the Unity Test Runner.

On Figure 15 the green ticks indicate that the performance test named

SpawnFireBalls_ReccommendedConfig_Min120FPS was successful. Moreover, we can

see the Test Summary that contains the aforementioned information. However, there is

one big problem with this summary window, the data is truncated in case of large data.

Luckily, whenever a performance test is executed the results are saved to a platform

specific location. In case of a Windows operating system these are saved into

AppData\LocalLow\<CompanyName>\<ProjectName>. The results are saved into both

.xml49 and .json50 which extremely popular in game development.

Figure 16: The hardware info inside the performance test results .json. In this thesis we will

use the above configuration for performance testing.

Although the results are saved into a human-readable file format our brain can’t really

process 10 000+ sampled values by just looking at the them so an external tool is advised

that can visualize the data. Fortunately, there is an external tool called the Unity

49 Extensible Markup Language is both a human and machine-readable data-interchange file format.
50 JavaScript Object Notation, is both a human and machine-readable data-interchange file format.

"Hardware": {
 "OperatingSystem": "Windows 10 (10.0.0) 64bit",
 "DeviceModel": "X470 AORUS GAMING 7 WIFI (Gigabyte Technology Co., Ltd.)",
 "DeviceName": "DESKTOP-RNN8BGG",
 "ProcessorType": "AMD Ryzen 7 3700X 8-Core Processor ",
 "ProcessorCount": 16,
 "GraphicsDeviceName": "NVIDIA GeForce GTX 760",
 "SystemMemorySizeMB": 16329

 }

 42

Performance Benchmark Reporter. The Performance Benchmark Reporter produces a

html report based on the persisted test results which can be opened in a browser for further

examinations. Moreover, from Unity 2019 there is an editor integrated tool called

Performance Test Reporter. This can also visualize the results of the executed

performance tests allowing faster iterations since no external tool is required. The

Performance Test Report tool can also export the data into the popular .csv51 file format,

allowing developers to easily import their results into tools like Microsoft Excel and

Power BI52. In this thesis we will use the Performance Test Report tool for faster

iterations.

Figure 17: The Performance Test Report tool showing the visualized frame times.

One of the biggest advantage of this integrated performance tool family is that we

can natively run these tests on the target platforms. Via IprebuildSetup interface we

can implement a setup method that is automatically called before the performance test is

executed by the Unity Test Runner. This allows the developers to flexibly build the player

for performance tests using the same Unity project against different platforms, render

threading modes, player graphics APIs, scripting implementations, and XR-enabled

settings such as stereo rendering path and VR SDKs. Since this allows a common project

for all target platforms a convenient way to run these tests is to use a command line. Using

a command line allows the developers to pass arguments to the aforementioned setup

method where these arguments can be parsed and a desired and customized player can be

built for running the performance tests.

51 Comma-separated values or Character-separated values is a common data exchange format which is

supported by many applications
52 Power BI is robust service for data visualization that can easily create reports and dashboards.

 43

5.2.2 Performance test examples

One of the easiest ways to illustrate how useful performance testing can be and how

powerful the PTE API is, is to use illustrate it with examples. The code and the project

we use in this sub-section can be found on the GitHub repository53 of this thesis.

5.2.2.1 Enforcing loading times example

It is a common performance and optimization goal that the game should load fast.

This can be crucial in both AAA titles and in simple mobile games. E.g. with long loading

times we can easily break the illusion of a RPG thus the joy of the player. The same

applies to simple casual mobile games. If the user has to wait 5-10 seconds for a new

level to load where levels are changed frequently and we even put ads after each level

(which we should absolutely not) then our user will be dissatisfied quite fast and our game

will belong to the group of “installed for 10 minutes”. While reducing the adds is a

marketing strategy, optimizing the loading times usually requires an engineer. In this

example we will analyze the performance test written for enforcing a previously set

optimization goal for loading times. The example is located in the GitHub repository

under, Optimization Examples\Assets\Scenes\Performance Test Examples.

The game consists of three extremely simple scenes.

▪ Main Menu – a simple menu scene with 2 level selection buttons.

▪ Dragon Level – a level where the player can shoot fireballs on a dragon.

▪ Empty Level – an empty level that can be loaded rapidly.

All the relevant scripts are located under the Performance Test Examples’ Script folder.

The DragonMover.cs script moves the dragon automatically on the terrain while the

FireBallSpawner.cs script shoots fire-balls towards the dragon from the sky. The

MainMenuController.cs handles the UI actions in the Main Menu scene.

At the beginning of the development there was a problem about loading the dragon

scene. There were so many initialization logics in Awake and Start messages that loading

the scene took several seconds. Because of this an optimization goal was defined for level

loading times stating that “Levels should load under 2 seconds on the recommended

configuration”. Luckily the acceptance criteria (the team follows an agile development

53 https://github.com/Menyus777/Game-engine-specific-optimization-techniques-for-Unity

https://github.com/Menyus777/Game-engine-specific-optimization-techniques-for-Unity

 44

process) required performance tests, so an asserted performance test was written in order

to enforce the optimization goal through the development process.

It is important to structure our code logically but since level loading is not just a

simple method but a complex process it cannot be placed under MainMenuController’s

performance tests in spite of the fact that level loading is exclusively handled by this

script. Moreover, performance tests should be as close as possible to the real-world use-

cases (with some exceptions e.g. breakpoint test) thus it is advised to execute them as a

user would execute the specific scenario. The loading times performance test are located

under the folder structure Assets\Tests\Performance\Performance Test Examples

inside the LevelLoadingPerformanceTests.cs script.

The Unity Test Framework is built on top of Nunit therefore the whole testing

concept is the same as in Nunit. An instance of the test is created, setup methods are called

and after all of the tests are finished the tear down methods are executed. The Unity Test

Framework extended the available setup and tear down handlers so they are fit into the

engine scripting mechanism. E.g. the code snippet on Figure 18 shows a Setup method.

We can clearly see this by the method name and by the attribute placed on the method.

UnitySetUp is a special attribute that allows yielding54 in the setup method therefore

allowing coroutine55 behavior in setup methods. This is especially crucial at scene loading

since scenes are only fully loaded in the next frame rather than in the frame loading was

originally initiated.

Figure 18: The setup method for the loading time performance tests

54 In Unity coroutines are implemented via enumerators therefore the yielding logic in Figure 18.
55 Coroutines are a type of methods which can pause execution, save state, then yield control back to

Unity’s game loop, so later in time the coroutine can continue execution where it "left off".

[UnitySetUp]
public IEnumerator BeforeEach()
{
 // Loading the relevant scene
 SceneManager.LoadScene("Performance Test Examples - Main Menu");

 // Wait a frame for scene load
 yield return null;

}

 45

For loading time performance testing we use a UnityTest which is basically a test that

will run in parallel to updates rather than just calling a method and stepping through it

sequentially. Since UnityTests are yielding tests, rather than returning void they return

an IEnumerator allowing on-demand yielding logic.

Figure 19: The performance test that enforces the 2 seconds loading times across scenes

Figure 19 shows a typical custom performance test in Unity where not the Profile

Markers are measured but a custom data called Load Time. For exact load time

measurement stopwatch was used which is a high precision timer tool provided by the

.NET library. Stopwatch is using the processor’s internal timer therefore it is a perfect fit

for performance measurements. The method loads and measures the loading time for

every specified scene, this is provided by the ValueSource attribute which executes the

test n times where n is the number of elements in the _levels variable. The measurement

is recorded via the Measure class’ static Custom method which samples the loading time

only one time through the test and records it inside the supplied sample group. As we can

see the test uses the AAA pattern as the comments indicate thus, the test can be clearly

[UnityTest, Performance]
public IEnumerator LevelsLoadUnder2Seconds_RecommendedConfig(
 [ValueSource("_levels")](string levelButton, string sceneName) level)
{
 // Arrange
 // Creating a sample group for loading time
 var sampleGroup = new SampleGroup("Load Time", SampleUnit.Millisecond);
 var levelButton = GameObject.Find(level.levelButton).GetComponent<Button>();
 Stopwatch sw = new Stopwatch();
 // Stopping the stopwatch when the scene gets loaded
 SceneManager.sceneLoaded += (scene, loadMode) => sw.Stop();
 // Small idling aka warmup before measurement starts
 yield return new WaitForSecondsRealtime(2.0f);

 // Act
 sw.Start();
 // Clicking on the appropriate scene button
 levelButton.onClick.Invoke();

 // Waiting till the scene loads (sw is stopped when the scene is loaded)
 yield return new WaitUntil(() => !sw.IsRunning);
 Measure.Custom(sampleGroup, sw.ElapsedMilliseconds);

 // Assert
 Assert.Less(sw.ElapsedMilliseconds, 2000,
 "Violation of OG_86650: " +
 "Levels should load under 2 seconds on the recommended configuration " +
 $"but \"{level.sceneName}\" loaded under {sw.ElapsedMilliseconds} " +
 "milliseconds");
}

 46

separated into a setup (Arrange), Act and check results (Assertion) triad. The last

interesting part about the code snippet in Figure 19 is the assertion section. With a well

formatted assertion text we can clearly indicate why the test phase failed. The assertion

text even indicates the optimization goal that was violated in case of a long loading time.

OG means optimization goal the number after it, is the ID of the story.

Figure 20: The result of the Dragon Level loading time test in case of a failure inside the Unity

Test Runner’s summary window.

5.2.2.2 Measuring frame times and FPS example

A common performance/optimization goal in game development is to guarantee a

minimum FPS through the game. Fortunately, this does not mean that the frame time

should be consistent but on average the FPS should be. For some strange reasons the

Performance Test Extension does not provides an FPS counter for measurements, only

frame time measurement through the Profiler API. In this example we will see what

scoped measurements in PTE are and why they are so useful.

Scoped measurements in PTE are measurements that only sample between well-

defined borders. In C# the most convenient way for scoping is the using block. Since PTE

does not provide an FPS measurement extension the thesis’ GitHub repo does. The

ScopedFPSMeasurement.cs script contains a class that can be used for FPS

measurements. Since the class implements the Idisposable interface the class can be

used inside a using block allowing convenient scoped measurements.

Figure 21: The advantage of scoped measurements

In this example, we assume the development team defined an optimization goal for

the game itself which states that on the recommended configurations the game should run

above 120 fps. Because of this, on computation heavy levels performance tests are

using (ScopedFPSMeasurement.StartFPSMeasurement("FPS"))
{
 // Sampling will only happen here between the brackets
}

 47

guarding this goal. One of this computation heavy levels is the Dragon Level. On this

level the player can spawn quite many fire-balls and every fireball has a computation

heavy material and a Rigidbody.

Figure 22: The performance test for the dragon level

In order to maintain stable FPS with every changes the team wrote the performance

test in Figure 22 inside the DragonLevelPerformanceTest.cs. The above test loads the

Dragon Level scene (cannot be seen because it is in the setup method of the class) then

spawns fireballs with a simulated click delay. The frame time and FPS are only measured

in the critical part where the computation heavy calculations happen. Via scoped

measuring our test will be more precise since idling is not part of the sampling. After

running the test, the Unity Test Report tool will give us a detailed summary about the

results.

[UnityTest, Performance]
public IEnumerator SpawnFireBalls_RecommendedConfig_Min120FPS()
{
 // Arrange
 var fireBallSpawner =
 GameObject.Find("Spawner").GetComponent<FireBallSpawner>();
 // Small idling aka warmup before measurement starts
 yield return new WaitForSecondsRealtime(2.0f);
 // Simulating user input delay
 var userInputDelayYieldInstruction = new WaitForSecondsRealtime(0.15f);

 // Act
 using (Measure.Frames().Scope("Frame Time"))
 using (ScopedFPSMeasurement.StartFPSMeasurement("FPS"))
 {
 for (int i = 0; i < 250; i++)
 {
 fireBallSpawner.SpawnFireBalls(25);
 yield return userInputDelayYieldInstruction;
 }
 }

 // Assert
 // Calculating the results for assertions
 PerformanceTest.Active.CalculateStatisticalValues();
 var fpsResults =
 PerformanceTest.Active.SampleGroups.Find(s => s.Name == "FPS");

 Assert.GreaterOrEqual(fpsResults.Median, 120,
 "Violation of OG_117650: " +
 "The median FPS should be higher than 120 frames per second.");
}

 48

Figure 23: The results of the scoped measurements inside the Unity Test Reporter

We can see that the frame time fluctuates quite much however, the FPS is quite

consistent since so many frames are rendered in a second this fluctuation disappears. Of

course, if the test fails the results are still available and also the developers will get a

notification that a recent change made the scene too computational heavy therefore

violating the optimization goal.

5.3 Benchmarking

A common mistake when applying optimization to a component is not verifying that

we are indeed using the optimal solution from the perspective of the goal. E.g. in the 2.3.2

(Pre-production) section we mentioned an example about choosing a proper physics

solution for our project. If we only read the marketing description and the first page of

the documentation of each physics solution, we might choose a physics solution that is

not the most optimal for our use case. This is when benchmarking comes into play. In

optimization, benchmarking is the process of comparing different solutions’ performance

via properly set up test cases. Via properly setting up benchmarks we can verify by exact

numbers that indeed the chosen solution is the most optimal for our use-case. For

benchmarking in Unity, we can use the frameworks, tools and packages mentioned in the

previous section since they can give us detailed measurements both from the profiler and

from a custom perspective. After the results are available we can compare them with one

of the mentioned tools.

 49

6 Scripting Optimization Techniques for Unity

Every game engine has a different architecture therefore there are some optimizations

that need to be considered more in one than in the other. E.g. an Unreal Engine developer

does not have to worry about interop calls while a Unity developer should. An Unreal

Engine developer can opt-out from garbage collection while a Unity developer cannot

and while an Unreal engine developer should worry about memory leaks a Unity engine

developer usually should not. Because of the nature of these architectural differences

there are many optimization techniques that only apply to game engines sharing similar

architecture as Unity. In this section, we will discuss some of these advanced optimization

techniques.

6.1 Update manager

The Unity engine has a Messaging system which allows the developers to define

methods that will be called by an internal system based on their functionalities. One of

the most commonly used Messages is the Update message which is called in every frame

by the engine in order to Update the state of the GameObject. Every MonoBehaviour has

this Message yet there is one strange thing about it which is that none of the classes in the

inheritance hierarchy have a method defined by the name Update. Experienced .NET

developers will probably think that if the method is not defined then Unity must be using

reflection to find these Messages and call them. But the truth is that Unity is inspecting

the script the first time the type is accessed (independently from the scripting backend)

and checks if any of the Message methods are defined. If a Message method is defined

then the engine will cache this information. If an instance of this type is instantiated then

the engine will add it to the appropriate list and will call the method whenever it should.

This is the key reason why Unity does not care about the visibility of our Message method.

Figure 24: Both solutions will achieve the same results.

public class Example1 : MonoBehaviour
{
 private void Update() { }
}
public class Example2: MonoBehaviour
{
 public void Update() { }
}

 50

However, it is advised to give private visibility to our Message methods since they are

supposed to be called only by the engine’s internal messaging system. This mechanism

is also the reason why the engine does not call these messages in a deterministic order.

The main problem with this approach is that every time the engine calls a Message

method an interop call has to happen. We already talked about this at the end of section

4.1. Fortunately, Messages rarely do marshalling so the overhead is smaller than in the

example in section 4.1, yet not negligible in some cases. E.g. if our game handles

thousand or tens of thousands of objects which all have a script requiring a Message call

then this overhead can be significant. A solution to this is to avoid interop calls. A good

approach to this is behavior grouping. If we have a MonoBehaviour that is attached to a

huge number of GameObjects we can cut the number of interop calls to just one by

introducing an update manager. Since the update manager is also a managed object

running managed code the only interop call will happen between the update manager’s

Update Message and the Unity engine’s internal Message handler. We have to note the

fact that this optimization technique is only relevant in large-scale projects, and the frame

time saved via this technique is more impactful when using the Mono scripting backend.

(Remember IL2CPP transpiles to C++).

Figure 25: The concept of update managers in contrast to the traditional way.

 51

After understanding Figure 25 we can implement a basic update manager, then we

will benchmark an example scene with and without an update manager. The example

scene is named Update Manager. The folder and namespace structure shares the same

properties as previous examples.

The Update Manager scene spawns 10 000 objects. All of these objects have a Mover

script that slowly moves them up and down. The Spawner class that spawns the

aforementioned objects has a UseUpdateManager flag which if at the initialization is set

to true will use the UpdateManager class for updates otherwise will use the traditional

internal Message handler.

Figure 26: The UpdateManager class

As we can see both the concept and the implementation is simple. Of course, this

simple example only allows the tracking of ManagedMover types but this does not mean

we are only able to track one type at a time. We have plenty of tools to fix the problem

(e.g. interfaces) but for the sake of simplicity and shortness we will go with the above

method. The only drawback of the UpdateManager is that from now on, it is our

public class UpdateManager
{

 static HashSet<ManagedMover> _updateables = new HashSet<ManagedMover>();

 public static void Add(ManagedMover mover)
 {
 _updateables.Add(mover);
 }

 public static void Remove(ManagedMover mover)
 {
 _updateables.Remove(mover);
 }

 class UpdateManagerInnerMonoBehaviour : MonoBehaviour
 {
 void Update()
 {
 foreach (var mover in _updateables)
 {
 mover.UpdateManager_Update();
 }
 }
 }

 #region Static constructor and field for inner MonoBehaviour
 ...
 #endregion

}

 52

responsibility to remove the ManagedMover instances from the _updateables collection

while in the traditional way Unity would handle this for the developers. Luckily, we can

solve this easily with OnDisable and OnEnable Messages as it can be seen on Figure 27.

Figure 27: Simply calling OnEnable and OnDisable will do the trick for automatic state

management for custom updatable MonoBehaviours.

6.1.1 Results

Benchmarking a scenario where the rendering is not relevant should happen without

a camera and rendering set to low wherever possible. This is important to keep in mind

especially when our goal is to get extremely accurate results. Since our scene will do the

exact thing rendering wise no matter of the update solution we use, for the sake of visual

experience the camera will not be turned off.

Before writing the benchmark, we should plan how we should execute it. Since a test

scene is available, the most straightforward solution is to use this test scene and measure

its performance. In the previous sections we talked about the different scripting setups

available in Unity so this should be taken into consideration as well since some of the

platforms support one another. If the benchmark is about telling the real difference

between the two solutions the measurement should be restricted to the relevant parts. So,

measuring the frame time and FPS here is not the best benchmarking strategy here

therefore we are going to use a StopWatch and measure the relevant parts only.

Measuring the UpdateManager is easy. We just put a StopWatch before and after the

foreach block and sample it every time via a delegate inside the benchmark.

Figure 28: The added StopWatch to the UpdateManager’s Update Message.

void OnEnable() => UpdateManager.Add(this);

void OnDisable() => UpdateManager.Remove(this);

void Update()
{
 SW.Restart();
 foreach (var mover in _updateables)
 {
 mover.UpdateManager_Update();
 }
 SW.Stop();
 StopWatchStoppedCallback?.Invoke();
}

 53

On the other hand, measuring the simple Update messages is not that trivial. Since

so many game loops are executed under a second, we do not want to pollute our Update

method so the measurement and checking must be moved elsewhere. A good solution to

this problem is to create two MonoBehaviours and set their execution order just before

and after the Mover script. The only drawback of this solution is that we will have an

additional interop call in order to stop the timer in the just after MonoBehaviour. The two

helper classes are named UpdateBenchmarkHelperJustBefore and After and located in

the Test assembly. The stopping and measuring logic are the same as in Figure 28.

Figure 29: The results of the benchmarks under different scripting backends

Not surprisingly IL2CPP leading the competition by far however it’s still interesting

that the Update Manager is still twice as fast as the traditional way. If we profiled the

execution of the Traditional method’s IL2CPP build we would probably find many Unity

specific calls like check if the GameObject exists before invoking a component method

etc. and these would probably explain the longer execution time. We can also make the

conclusion that IL2CPP in this case is far faster than Mono, usually around twice as fast.

The benchmark ran for one minute prior to a 5 seconds warmup and both scripting

backends had the ideal compiler setting.

 54

6.2 Custom properties and hashing

Unity has many internal systems which allow the developers to create own properties

in order to extend those systems. Systems and modules like the Animator or Material and

Shader properties are all allow this type of behavior. Whenever the developer creates such

a property a unique name has to be assigned to it. However, Unity does not use this unique

string name to address these objects. Under the hood a hash is calculated based on the

string value and the addressing will happen via this unique ID. If the developer tries to

assign a non-unique name to a property Unity will automatically concatenate a unique

number after the name thus enforcing uniqueness.

The problem with this is that many developers do not know about this mechanism

and tend to access these properties using the overload methods that are accepting a string

value. In this case, the method calculates the hash and then assigns or returns the desired

value. Normally this does not produce measurable differences in frame time since it’s

quite rare that for example the Animator’s state is queried in every frame. Howbeit this

can cause performance degradations in cases when it is used e.g. in tight loops or in

Update Messages. A good example to this are shaders. It is a common scenario where a

shader has to be updated via a C# script in order to execute some kind of special culling,

calculate light based on game logic etc. Fortunately, Unity provided methods that are

directly accepting hashed values for performance improvements. So, a proper solution to

avoid hash calculations every time the get/set property value methods are invoked is to

pre-calculate these hashes at application startup or at scene load and use the overload

methods that are directly consuming these hashes.

When working with systems that allow the definition of custom properties, a good

design pattern proposed by this thesis is to use a mapping class containing the

precalculated hash values via the advantage of static classes. In C#, static classes are a

type of classes that cannot be instantiated and therefore can only contain static members.

Since a static class cannot be instantiated inheritance is also prohibited. Moreover, the

application cannot specify exactly when the class is loaded. However, it is guaranteed to

be loaded and to have its fields initialized before the class is referenced for the first time

in the program. A static class remains in memory for the lifetime of the application. Static

classes are therefore a perfect choice for storing “global” state about the application. Since

all of the hashing methods are static ones, we can use them in static constructors or in

static field initializers.

 55

The concept of the proposed design pattern is that whenever a shader is created that

needs input or the game needs output from it, a corresponding static mapping class with

the same name as the shader has to be created based on Figure 30.

Figure 30: The proposed design pattern for storing pre-calculated hash values for shaders

In Figure 30 we can see a hash mapping static class for the StylizedWater shader.

The StylizedWater shader needs three input parameters from the game thus the mapping

class has three int values containing the pre-calculated hash values with the same name

as in the StylizedWater shader. By defining the properties with the same name, we can

avoid the use of magic strings since with the nameof keyword we can convert a variable

name to a string value. Therefore, whenever we need to change the property’s name inside

the shader, we only need to change the variable name in the static class which can be

conveniently done via IDE specific refactor tools. Moreover, all of the mapping values

are readonly so accidental value assignments are prohibited by the compiler.

Figure 31: The parameter declarations of the StylizedWater shader

Figure 32: Example usage of the proposed design pattern

namespace ExampleProject.Shaders
{
 public static class StylizedWater
 {
 public static readonly int _Color =
 Shader.PropertyToID(nameof(_Color));

 public static readonly int _FogColor =
 Shader.PropertyToID(nameof(_FogColor));

 public static readonly int _IntersectionColor =
 Shader.PropertyToID(nameof(_IntersectionColor));
 }
}

Shader "Custom/StylizedWater"
{
 ...
 fixed4 _Color;
 fixed4 _FogColor;
 fixed4 _IntersectionColor;
 ...
}

_material.SetColor(StylizedWater._Color, Color.cyan);

 56

6.2.1 Results

The example scene for the benchmarking is called Importance of Hashing. The scene

was built on the example scene of Harry Alisavakis [24] showing his stylized water

shader. The optimization is scripting backend independent so IL2CPP was used since that

is the recommended backend for standalone windows.

Figure 33: The results of the benchmarks

As it can be seen on Figure 33 this optimization is a micro optimization and on its

own won’t change that much since the measurement unit now is in micro, not in

milliseconds. However, in large projects and on low end devices this might be a nice

optimization on its own. Pre-calculated hashing is also extremely important on consoles

since on PlayStation and on Xbox most of the graphics touches are achieved via proper

shading rather than on model complexity.

The benchmark ran for one minute prior to a 5 seconds warmup. For more impactful

numbers 250 shaders were used meaning that in each frame 1000 hash values were

calculated with the unoptimized solution rather than just a value assignment/retrieval.

Since this optimization technique is more impactful on lower end devices the

benchmarks were repeated on an Android phone with the following hardware.

Figure 34: The hardware info of an Asus Zenfone Max Pro M1

"Hardware": {
 "OperatingSystem": "Android OS 8.1.0/API-27(OPM1/15.2016.1902.340-20190216)",
 "DeviceModel": "asus ASUS_X00TD",
 "DeviceName": "ASUS_X00TD",
 "ProcessorType": "ARM64 FP ASIMD AES",
 "ProcessorCount": 8,
 "GraphicsDeviceName": "Adreno (TM) 512",
 "SystemMemorySizeMB": 2744
}

 57

Since we cannot setup the same performance requirements for a high-end desktop PC and

for a low-end Android device only 20 shaders were used in Figure 35.

Figure 35: The results of the lighter benchmarks on an Asus Zenfone Max Pro M1

Note the outlier values! Under 60 seconds around 10 frames suffered nearly a

millisecond stuttering because of hash value calculations. In a performance critical mobile

game where graphics are important and animations are highly used this is unacceptable.

The tests were run ten consecutive times and in all of them the outlier values were

overrepresented. In order to visualize how much stuttering happens over a one-minute

time span, the results were ordered from highest to lowest execution time (Figure 36).

Figure 36: The 10th consecutive run on the Android phone in decreasing order.

Note how the pre-calculated hash has only one serious outstanding value while the

no pre-calculated hash solution has 10-20 times more. To sum it all, this is a micro

optimization. Yet such a simple optimization technique that should be always applied.

Moreover, the proposed design pattern avoids the usage of magic strings thus making the

code more readable and easier to refactor.

 58

6.3 Struct assignment

When a project depends on the mono runtime for some reasons and the project also

heavily utilizes vector math or struct creation in general, there is an optimization that can

save serious micro or milliseconds. Whenever a struct is created via the new keyword the

constructor is called thus a stack frame allocation happens. The parameters and some

meta data are pushed onto the stack and when the constructor is finished all the relevant

data has to be deallocated. In case of large data, this can mean that serious micro or

milliseconds are spent on constructor function calls. This is the case with vector math in

Unity. Unity implemented scaling in the following way Figure 37.

Figure 37: Implementation of scaling in Unity 2019 LTS

We can see that when vector * scalar returns it calls the constructor of Vector3. A more

optimal solution when using the mono runtime would be the one in Figure 38.

Figure 38: A more optimal solution when using the mono backend

The key move here is that we do not call the struct’s constructor but we allocate the

memory needed for it with empty values. After this we just assign the individual

components and return this value. This way we can avoid one more indirection via a

constructor function call and additionally we do not have to allocate and deallocate on the

stack.

public static Vector3 operator*(Vector3 a, float d)
{
 return new Vector3(a.x * d, a.y * d, a.z * d);
}

public static Vector3 operator*(Vector3 a, float d)
{
 Vector3 result;
 result.x = a.x * d;
 result.y = a.y * d;
 result.z = a.z * d;
 return result;
}

 59

6.3.1 Results

Let’s see some benchmarks (Figure 39) using the mono backend on the PC configuration.

Figure 39: The difference can be quite impactful when using large data with Mono

The benchmark is doing 50 000 vector scaling with 10 warmup iterations. It is located

inside the VectorAssignmentBenchmark.cs file.

But if this is such a problem why Unity does not fix it?

The answer is simple. Mono is not the recommended scripting backend for

production builds. The truth is that the previous optimization is not just useless but

actually harmful on an IL2CPP build as it can be seen in Figure 40. Therefore, Unity

does not intend to slow down its flagship backend obviously. The only interesting

question is what would Unity do if they are planning to switch Mono to CoreCLR when

.NET 6 is introduced. But that’s a question for the future.

Figure 40: An IL2CPP build is actually slower when this optimization is applied

 60

6.4 Hierarchy Optimization

In Unity every GameObject has a Transform component. It cannot be removed and

only one can be attached to a single GameObject. Every time a GameObject moves,

altering its transform, we need to let every game system that might care about this know.

Rendering, physics, and every parent and child of the GameObject needs to be informed

of this movement in order to match. As the project grows in size a heavily composited

hierarchy could spend serious micro or milliseconds sending and receiving Transform

Changed Messages. So, while ordering our GameObjects logically can really help

navigating in the hierarchy, over organizing can cause serious performance penalties. It’s

extremely hard to present an example where this can cause serious performance penalty

since the project has to be a large one, however it can be still measured on smaller projects

albeit with more modest results.

In Figure 41 we can see a heavily composited hierarchy or we could say an over

organized object hierarchy.

Figure 41: An over organized object hierarchy

 61

As we can see when a unit is spawned it is grouped under a spawner GameObject but a

spawner object is grouped under several other GameObjects as well. The Water Mage

unit type uses an over organized hierarchy where audio, VFX and abilities also have

dedicated GameObjects thus dedicated transforms. This would not be a problem if the

hierarchy tree would be static but “unfortunately” mages can move or new units can be

spawned. Whenever a mage moves, the whole hierarchy tree have to be updated via

Transform Changed Messages. The script which moves the mage is located on the mage’s

root object (Water Mage – Level 1).

Let’s optimize this over organized hierarchy for performance reasons. Firstly, when

moving the mage, we do not have to move all its abilities audio files etc. So, the first

optimization would be to move the mover script to the root bones GameObject. This way

only the relevant parts are moved, however we are still sending countless Transform

Changed Messages towards parent GameObjects. Even though grouping the spawned

units under the respective category is a good organization strategy, if we leave the editor

scope it becomes useless. Removing this deep composition and spawning the units on the

top level or under a common shallow composited container GameObject will greatly

improve our performance.

6.4.1 Results

Let’s see a benchmark where we move 300 mages in an empty scene. The scene used

by the benchmark is called Hierarchy Optimization – Heavy Composition. The

benchmark will run for 60 seconds prior to a 5 seconds warmup phase.

Figure 42: The benchmark results of the heavy composition

 62

Figure 42 on its own does not tell much so let’s see a benchmark with the applied

changes where the units are spawned on top level. The scene used by the benchmark is

called Hierarchy Optimization – Optimized Composition.

Figure 43: The benchmark results of the optimized hierarchy

As we can see via the small applied changes in this small and simple scene allowed

us to boost our FPS by 10%.

 63

7 Conclusion

In this thesis we explored the field of optimization in game development. We learned

how to identify possible performance critical areas of our system early in the development

process. We learned how to handle arising performance degradations via setting up proper

optimization goals in order to handle these degradations from observation to

implementation. We mastered when and what type of optimizations we should do in the

different stages of the development process. Afterwards, we took a deep dive into the

mechanisms of the popular real-time development platform Unity. Investigated why

Unity choose C# as their scripting language and how it is used by both Mono and the

IL2CPP scripting backend. After this, we gained knowledge about the available tools and

frameworks for performance analysis in Unity. We proposed a general solution for

automatic performance degradation detection and learned about why benchmarking and

performance testing is crucial in game development as well. At the end of this thesis, after

mastering the aforementioned topics, we gathered some advanced optimization

techniques and illustrated them via real life scenarios. Finally, we benchmarked their

results through proper performance tests.

 64

Bibliography

[1] KNUTH, Donald E. Structured programming with go to statements. ACM
Computing Surveys (CSUR), 1974, 6.4: 261-301.

[2] Unity Technologies, Our Impact by the numbers
https://unity.com/our-company
Acessed 2020.09.20

[3] Steam, The First Tree
https://store.steampowered.com/app/555150/The_First_Tree/
Acessed 2020.09.28

[4] Learning Hub, The 7 Stages of Game Development,
https://learn.g2.com/stages-of-game-development
Acessed 2020.10.02

[5] Unity Technologies, Unparalleled platform support
https://unity.com/features/multiplatform
Acessed 2020.10.06

[6] Wilmer Lin, ECS: Performance by Default
https://www.raywenderlich.com/7630142-entity-component-system-for-
unity-getting-started#toc-anchor-003
Acessed 2020.10.07

[7] Unity Technologies, DOTS Packages
https://unity.com/dots/packages
Acessed 2020.10.07

[8] Unity Technologies, Unity Reference-Only License
https://unity3d.com/legal/licenses/Unity_Reference_Only_License
Acessed 2020.10.10

[9] Microsoft Docs, C# Documentation
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
Acessed 2020.10.11.

[10] Wikipedia: C Sharp (programming language),
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
revision 11:53, 11 October 2020

[11] Microsoft Docs, What is “managed code”?
https://docs.microsoft.com/en-us/dotnet/standard/managed-code
Acessed 2020.10.14

[12] Microsoft Docs, Common Language Runtime (CLR) overview
https://docs.microsoft.com/en-us/dotnet/standard/clr
Acessed 2020.10.16

https://unity.com/our-company
https://store.steampowered.com/app/555150/The_First_Tree/
https://learn.g2.com/stages-of-game-development
https://unity.com/features/multiplatform
https://www.raywenderlich.com/7630142-entity-component-system-for-unity-getting-started%23toc-anchor-003
https://www.raywenderlich.com/7630142-entity-component-system-for-unity-getting-started%23toc-anchor-003
https://unity.com/dots/packages
https://unity3d.com/legal/licenses/Unity_Reference_Only_License
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://docs.microsoft.com/en-us/dotnet/standard/managed-code
https://docs.microsoft.com/en-us/dotnet/standard/clr

 65

[13] ZDNet, Security bugs and memory leaks
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-
are-memory-safety-issues/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-
safety-issues/
Acessed 2020.10.16

[14] Eric Lippert, Mutating Readonly Structs
https://docs.microsoft.com/en-us/archive/blogs/ericlippert/mutating-
readonly-structs
Acessed 2020.10.26

[15] Microsoft Docs, Calling Native Functions from Managed Code
https://docs.microsoft.com/en-us/cpp/dotnet/calling-native-functions-from-
managed-code?redirectedfrom=MSDN&view=msvc-160
Acessed 2020.10.28

[16] Wikipedia: Mono (software)
https://en.wikipedia.org/wiki/Mono_(software)
revision 07:02, 3 November 2020

[17] Alexandre Mutel, Porting the Unity Engine to .NET CoreCLR
https://xoofx.com/blog/2018/04/06/porting-unity-to-coreclr/
Acessed 2020.11.08

[18] Josh Peterson, An introduction to IL2CPP internals
https://blogs.unity3d.com/2015/05/06/an-introduction-to-ilcpp-internals/
Acessed 2020.11.10

[19] Wikipedia: Profiling (computer programming)
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
revision 06:01, 19 November 2020

[20] Unity Manual, Profiler overview
https://docs.unity3d.com/Manual/Profiler.html
Acessed 2020.11.19

[21] Unity Manual, Performance Testing Extension for Unity Test Runner
https://docs.unity3d.com/Packages/com.unity.test-
framework.performance@latest/index.html
Acessed 2020.11.20

[22] Sean Stolberg, Performance Benchmarking in Unity: How to Get Started
https://blogs.unity3d.com/2018/09/25/performance-benchmarking-in-unity-
how-to-get-started/
Acessed 2020.11.21

[23] Valentin Simonov, 10000 Update() calls
https://blogs.unity3d.com/2015/12/23/1k-update-calls/
Acessed 2020.11.25

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://docs.microsoft.com/en-us/archive/blogs/ericlippert/mutating-readonly-structs
https://docs.microsoft.com/en-us/archive/blogs/ericlippert/mutating-readonly-structs
https://docs.microsoft.com/en-us/cpp/dotnet/calling-native-functions-from-managed-code?redirectedfrom=MSDN&view=msvc-160
https://docs.microsoft.com/en-us/cpp/dotnet/calling-native-functions-from-managed-code?redirectedfrom=MSDN&view=msvc-160
https://en.wikipedia.org/wiki/Mono_(software)
https://xoofx.com/blog/2018/04/06/porting-unity-to-coreclr/
https://blogs.unity3d.com/2015/05/06/an-introduction-to-ilcpp-internals/
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://docs.unity3d.com/Manual/Profiler.html
https://docs.unity3d.com/Packages/com.unity.test-framework.performance@latest/index.html
https://docs.unity3d.com/Packages/com.unity.test-framework.performance@latest/index.html
https://blogs.unity3d.com/2018/09/25/performance-benchmarking-in-unity-how-to-get-started/
https://blogs.unity3d.com/2018/09/25/performance-benchmarking-in-unity-how-to-get-started/
https://blogs.unity3d.com/2015/12/23/1k-update-calls/

 66

[24] Harry Alisavakis, Stylized water shading
https://halisavakis.com/my-take-on-shaders-stylized-water-shader/
Acessed 2020.11.28

[25] William Armstrong, Optimizing the Hierarchy
https://blogs.unity3d.com/2017/06/29/best-practices-from-the-spotlight-
team-optimizing-the-hierarchy/
Acessed 2020.11.30.

https://halisavakis.com/my-take-on-shaders-stylized-water-shader/
https://blogs.unity3d.com/2017/06/29/best-practices-from-the-spotlight-team-optimizing-the-hierarchy/
https://blogs.unity3d.com/2017/06/29/best-practices-from-the-spotlight-team-optimizing-the-hierarchy/

	Összefoglaló
	Abstract
	1 Introduction
	2 Optimization goals
	2.1 Recording optimization goals
	2.2 Pre-defined optimization goals
	2.3 Game development pipeline
	2.3.1 Concept
	2.3.2 Pre-production
	2.3.3 Production
	2.3.4 Post-production

	3 Unity
	3.1 About Unity
	3.2 Overview of the workflow

	4 Scripting in Unity
	4.1 C#, the scripting language of Unity
	4.2 .NET in Unity
	4.3 Scripting backends
	4.3.1 The Mono scripting backend
	4.3.2 The IL2CPP scripting backend

	5 Performance analysis in Unity
	5.1 Profiling
	5.1.1 The Unity Profiler

	5.2 Performance testing
	5.2.1 The Performance Testing Extension API
	5.2.2 Performance test examples
	5.2.2.1 Enforcing loading times example
	5.2.2.2 Measuring frame times and FPS example

	5.3 Benchmarking

	6 Scripting Optimization Techniques for Unity
	6.1 Update manager
	6.1.1 Results

	6.2 Custom properties and hashing
	6.2.1 Results

	6.3 Struct assignment
	6.3.1 Results

	6.4 Hierarchy Optimization
	6.4.1 Results

	7 Conclusion
	Bibliography

