-
-
Notifications
You must be signed in to change notification settings - Fork 18k
/
datetimelike.py
989 lines (812 loc) · 31.3 KB
/
datetimelike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
"""
Base and utility classes for tseries type pandas objects.
"""
from datetime import datetime
from typing import Any, List, Optional, Union
import numpy as np
from pandas._libs import NaT, iNaT, join as libjoin, lib
from pandas._libs.tslibs import timezones
from pandas.compat.numpy import function as nv
from pandas.errors import AbstractMethodError
from pandas.util._decorators import Appender, cache_readonly
from pandas.core.dtypes.common import (
ensure_int64,
is_bool_dtype,
is_categorical_dtype,
is_dtype_equal,
is_float,
is_integer,
is_list_like,
is_period_dtype,
is_scalar,
needs_i8_conversion,
)
from pandas.core.dtypes.concat import concat_compat
from pandas.core.dtypes.generic import ABCIndex, ABCIndexClass, ABCSeries
from pandas.core.dtypes.missing import is_valid_nat_for_dtype, isna
from pandas.core import algorithms
from pandas.core.arrays import DatetimeArray, PeriodArray, TimedeltaArray
from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
from pandas.core.base import _shared_docs
import pandas.core.indexes.base as ibase
from pandas.core.indexes.base import Index, _index_shared_docs
from pandas.core.indexes.extension import (
ExtensionIndex,
inherit_names,
make_wrapped_arith_op,
)
from pandas.core.indexes.numeric import Int64Index
from pandas.core.ops import get_op_result_name
from pandas.core.tools.timedeltas import to_timedelta
from pandas.tseries.frequencies import DateOffset, to_offset
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
def _join_i8_wrapper(joinf, with_indexers: bool = True):
"""
Create the join wrapper methods.
"""
@staticmethod # type: ignore
def wrapper(left, right):
if isinstance(left, (np.ndarray, ABCIndex, ABCSeries, DatetimeLikeArrayMixin)):
left = left.view("i8")
if isinstance(right, (np.ndarray, ABCIndex, ABCSeries, DatetimeLikeArrayMixin)):
right = right.view("i8")
results = joinf(left, right)
if with_indexers:
# dtype should be timedelta64[ns] for TimedeltaIndex
# and datetime64[ns] for DatetimeIndex
dtype = left.dtype.base
join_index, left_indexer, right_indexer = results
join_index = join_index.view(dtype)
return join_index, left_indexer, right_indexer
return results
return wrapper
@inherit_names(
["inferred_freq", "_isnan", "_resolution", "resolution"],
DatetimeLikeArrayMixin,
cache=True,
)
@inherit_names(
["mean", "freq", "freqstr", "asi8", "_box_values", "_box_func"],
DatetimeLikeArrayMixin,
)
class DatetimeIndexOpsMixin(ExtensionIndex):
"""
Common ops mixin to support a unified interface datetimelike Index.
"""
_data: Union[DatetimeArray, TimedeltaArray, PeriodArray]
freq: Optional[DateOffset]
freqstr: Optional[str]
_resolution: int
_bool_ops: List[str] = []
_field_ops: List[str] = []
hasnans = cache_readonly(DatetimeLikeArrayMixin._hasnans.fget) # type: ignore
_hasnans = hasnans # for index / array -agnostic code
@property
def is_all_dates(self) -> bool:
return True
# ------------------------------------------------------------------------
# Abstract data attributes
@property
def values(self):
# Note: PeriodArray overrides this to return an ndarray of objects.
return self._data._data
def __array_wrap__(self, result, context=None):
"""
Gets called after a ufunc.
"""
result = lib.item_from_zerodim(result)
if is_bool_dtype(result) or lib.is_scalar(result):
return result
attrs = self._get_attributes_dict()
if not is_period_dtype(self) and attrs["freq"]:
# no need to infer if freq is None
attrs["freq"] = "infer"
return Index(result, **attrs)
# ------------------------------------------------------------------------
def equals(self, other) -> bool:
"""
Determines if two Index objects contain the same elements.
"""
if self.is_(other):
return True
if not isinstance(other, ABCIndexClass):
return False
elif not isinstance(other, type(self)):
try:
other = type(self)(other)
except (ValueError, TypeError, OverflowError):
# e.g.
# ValueError -> cannot parse str entry, or OutOfBoundsDatetime
# TypeError -> trying to convert IntervalIndex to DatetimeIndex
# OverflowError -> Index([very_large_timedeltas])
return False
if not is_dtype_equal(self.dtype, other.dtype):
# have different timezone
return False
return np.array_equal(self.asi8, other.asi8)
@Appender(Index.__contains__.__doc__)
def __contains__(self, key: Any) -> bool:
hash(key)
try:
res = self.get_loc(key)
except (KeyError, TypeError, ValueError):
return False
return bool(
is_scalar(res) or isinstance(res, slice) or (is_list_like(res) and len(res))
)
def sort_values(self, return_indexer=False, ascending=True):
"""
Return sorted copy of Index.
"""
if return_indexer:
_as = self.argsort()
if not ascending:
_as = _as[::-1]
sorted_index = self.take(_as)
return sorted_index, _as
else:
# NB: using asi8 instead of _ndarray_values matters in numpy 1.18
# because the treatment of NaT has been changed to put NaT last
# instead of first.
sorted_values = np.sort(self.asi8)
freq = self.freq
if freq is not None and not is_period_dtype(self):
if freq.n > 0 and not ascending:
freq = freq * -1
elif freq.n < 0 and ascending:
freq = freq * -1
if not ascending:
sorted_values = sorted_values[::-1]
arr = type(self._data)._simple_new(
sorted_values, dtype=self.dtype, freq=freq
)
return type(self)._simple_new(arr, name=self.name)
@Appender(_index_shared_docs["take"] % _index_doc_kwargs)
def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs):
nv.validate_take(tuple(), kwargs)
indices = ensure_int64(indices)
maybe_slice = lib.maybe_indices_to_slice(indices, len(self))
if isinstance(maybe_slice, slice):
return self[maybe_slice]
return ExtensionIndex.take(
self, indices, axis, allow_fill, fill_value, **kwargs
)
@Appender(_shared_docs["searchsorted"])
def searchsorted(self, value, side="left", sorter=None):
if isinstance(value, str):
raise TypeError(
"searchsorted requires compatible dtype or scalar, "
f"not {type(value).__name__}"
)
if isinstance(value, Index):
value = value._data
return self._data.searchsorted(value, side=side, sorter=sorter)
_can_hold_na = True
_na_value = NaT
"""The expected NA value to use with this index."""
def _convert_tolerance(self, tolerance, target):
tolerance = np.asarray(to_timedelta(tolerance).to_numpy())
if target.size != tolerance.size and tolerance.size > 1:
raise ValueError("list-like tolerance size must match target index size")
return tolerance
def tolist(self) -> List:
"""
Return a list of the underlying data.
"""
return list(self.astype(object))
def min(self, axis=None, skipna=True, *args, **kwargs):
"""
Return the minimum value of the Index or minimum along
an axis.
See Also
--------
numpy.ndarray.min
Series.min : Return the minimum value in a Series.
"""
nv.validate_min(args, kwargs)
nv.validate_minmax_axis(axis)
if not len(self):
return self._na_value
i8 = self.asi8
try:
# quick check
if len(i8) and self.is_monotonic:
if i8[0] != iNaT:
return self._box_func(i8[0])
if self.hasnans:
if skipna:
min_stamp = self[~self._isnan].asi8.min()
else:
return self._na_value
else:
min_stamp = i8.min()
return self._box_func(min_stamp)
except ValueError:
return self._na_value
def argmin(self, axis=None, skipna=True, *args, **kwargs):
"""
Returns the indices of the minimum values along an axis.
See `numpy.ndarray.argmin` for more information on the
`axis` parameter.
See Also
--------
numpy.ndarray.argmin
"""
nv.validate_argmin(args, kwargs)
nv.validate_minmax_axis(axis)
i8 = self.asi8
if self.hasnans:
mask = self._isnan
if mask.all() or not skipna:
return -1
i8 = i8.copy()
i8[mask] = np.iinfo("int64").max
return i8.argmin()
def max(self, axis=None, skipna=True, *args, **kwargs):
"""
Return the maximum value of the Index or maximum along
an axis.
See Also
--------
numpy.ndarray.max
Series.max : Return the maximum value in a Series.
"""
nv.validate_max(args, kwargs)
nv.validate_minmax_axis(axis)
if not len(self):
return self._na_value
i8 = self.asi8
try:
# quick check
if len(i8) and self.is_monotonic:
if i8[-1] != iNaT:
return self._box_func(i8[-1])
if self.hasnans:
if skipna:
max_stamp = self[~self._isnan].asi8.max()
else:
return self._na_value
else:
max_stamp = i8.max()
return self._box_func(max_stamp)
except ValueError:
return self._na_value
def argmax(self, axis=None, skipna=True, *args, **kwargs):
"""
Returns the indices of the maximum values along an axis.
See `numpy.ndarray.argmax` for more information on the
`axis` parameter.
See Also
--------
numpy.ndarray.argmax
"""
nv.validate_argmax(args, kwargs)
nv.validate_minmax_axis(axis)
i8 = self.asi8
if self.hasnans:
mask = self._isnan
if mask.all() or not skipna:
return -1
i8 = i8.copy()
i8[mask] = 0
return i8.argmax()
# --------------------------------------------------------------------
# Rendering Methods
def _format_with_header(self, header, na_rep="NaT", **kwargs):
return header + list(self._format_native_types(na_rep, **kwargs))
@property
def _formatter_func(self):
raise AbstractMethodError(self)
def _format_attrs(self):
"""
Return a list of tuples of the (attr,formatted_value).
"""
attrs = super()._format_attrs()
for attrib in self._attributes:
if attrib == "freq":
freq = self.freqstr
if freq is not None:
freq = repr(freq)
attrs.append(("freq", freq))
return attrs
# --------------------------------------------------------------------
# Indexing Methods
def _convert_scalar_indexer(self, key, kind: str):
"""
We don't allow integer or float indexing on datetime-like when using
loc.
Parameters
----------
key : label of the slice bound
kind : {'loc', 'getitem'}
"""
assert kind in ["loc", "getitem"]
if not is_scalar(key):
raise TypeError(key)
# we don't allow integer/float indexing for loc
# we don't allow float indexing for getitem
is_int = is_integer(key)
is_flt = is_float(key)
if kind == "loc" and (is_int or is_flt):
self._invalid_indexer("label", key)
elif kind == "getitem" and is_flt:
self._invalid_indexer("label", key)
return super()._convert_scalar_indexer(key, kind=kind)
def _validate_partial_date_slice(self, reso: str):
raise NotImplementedError
def _parsed_string_to_bounds(self, reso: str, parsed: datetime):
raise NotImplementedError
def _partial_date_slice(
self, reso: str, parsed: datetime, use_lhs: bool = True, use_rhs: bool = True
):
"""
Parameters
----------
reso : str
parsed : datetime
use_lhs : bool, default True
use_rhs : bool, default True
Returns
-------
slice or ndarray[intp]
"""
self._validate_partial_date_slice(reso)
t1, t2 = self._parsed_string_to_bounds(reso, parsed)
i8vals = self.asi8
unbox = self._data._unbox_scalar
if self.is_monotonic:
if len(self) and (
(use_lhs and t1 < self[0] and t2 < self[0])
or ((use_rhs and t1 > self[-1] and t2 > self[-1]))
):
# we are out of range
raise KeyError
# TODO: does this depend on being monotonic _increasing_?
# a monotonic (sorted) series can be sliced
# Use asi8.searchsorted to avoid re-validating Periods/Timestamps
left = i8vals.searchsorted(unbox(t1), side="left") if use_lhs else None
right = i8vals.searchsorted(unbox(t2), side="right") if use_rhs else None
return slice(left, right)
else:
lhs_mask = (i8vals >= unbox(t1)) if use_lhs else True
rhs_mask = (i8vals <= unbox(t2)) if use_rhs else True
# try to find the dates
return (lhs_mask & rhs_mask).nonzero()[0]
# --------------------------------------------------------------------
__add__ = make_wrapped_arith_op("__add__")
__radd__ = make_wrapped_arith_op("__radd__")
__sub__ = make_wrapped_arith_op("__sub__")
__rsub__ = make_wrapped_arith_op("__rsub__")
__pow__ = make_wrapped_arith_op("__pow__")
__rpow__ = make_wrapped_arith_op("__rpow__")
__mul__ = make_wrapped_arith_op("__mul__")
__rmul__ = make_wrapped_arith_op("__rmul__")
__floordiv__ = make_wrapped_arith_op("__floordiv__")
__rfloordiv__ = make_wrapped_arith_op("__rfloordiv__")
__mod__ = make_wrapped_arith_op("__mod__")
__rmod__ = make_wrapped_arith_op("__rmod__")
__divmod__ = make_wrapped_arith_op("__divmod__")
__rdivmod__ = make_wrapped_arith_op("__rdivmod__")
__truediv__ = make_wrapped_arith_op("__truediv__")
__rtruediv__ = make_wrapped_arith_op("__rtruediv__")
def isin(self, values, level=None):
"""
Compute boolean array of whether each index value is found in the
passed set of values.
Parameters
----------
values : set or sequence of values
Returns
-------
is_contained : ndarray (boolean dtype)
"""
if level is not None:
self._validate_index_level(level)
if not isinstance(values, type(self)):
try:
values = type(self)(values)
except ValueError:
return self.astype(object).isin(values)
return algorithms.isin(self.asi8, values.asi8)
@Appender(Index.where.__doc__)
def where(self, cond, other=None):
values = self.view("i8")
if is_scalar(other) and isna(other):
other = NaT.value
else:
# Do type inference if necessary up front
# e.g. we passed PeriodIndex.values and got an ndarray of Periods
other = Index(other)
if is_categorical_dtype(other):
# e.g. we have a Categorical holding self.dtype
if needs_i8_conversion(other.categories):
other = other._internal_get_values()
if not is_dtype_equal(self.dtype, other.dtype):
raise TypeError(f"Where requires matching dtype, not {other.dtype}")
other = other.view("i8")
result = np.where(cond, values, other).astype("i8")
return self._shallow_copy(result)
def _summary(self, name=None) -> str:
"""
Return a summarized representation.
Parameters
----------
name : str
Name to use in the summary representation.
Returns
-------
str
Summarized representation of the index.
"""
formatter = self._formatter_func
if len(self) > 0:
index_summary = f", {formatter(self[0])} to {formatter(self[-1])}"
else:
index_summary = ""
if name is None:
name = type(self).__name__
result = f"{name}: {len(self)} entries{index_summary}"
if self.freq:
result += f"\nFreq: {self.freqstr}"
# display as values, not quoted
result = result.replace("'", "")
return result
def _concat_same_dtype(self, to_concat, name):
"""
Concatenate to_concat which has the same class.
"""
new_data = type(self._data)._concat_same_type(to_concat)
return self._simple_new(new_data, name=name)
def shift(self, periods=1, freq=None):
"""
Shift index by desired number of time frequency increments.
This method is for shifting the values of datetime-like indexes
by a specified time increment a given number of times.
Parameters
----------
periods : int, default 1
Number of periods (or increments) to shift by,
can be positive or negative.
.. versionchanged:: 0.24.0
freq : pandas.DateOffset, pandas.Timedelta or string, optional
Frequency increment to shift by.
If None, the index is shifted by its own `freq` attribute.
Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc.
Returns
-------
pandas.DatetimeIndex
Shifted index.
See Also
--------
Index.shift : Shift values of Index.
PeriodIndex.shift : Shift values of PeriodIndex.
"""
result = self._data._time_shift(periods, freq=freq)
return type(self)(result, name=self.name)
# --------------------------------------------------------------------
# List-like Methods
def delete(self, loc):
new_i8s = np.delete(self.asi8, loc)
freq = None
if is_period_dtype(self):
freq = self.freq
elif is_integer(loc):
if loc in (0, -len(self), -1, len(self) - 1):
freq = self.freq
else:
if is_list_like(loc):
loc = lib.maybe_indices_to_slice(ensure_int64(np.array(loc)), len(self))
if isinstance(loc, slice) and loc.step in (1, None):
if loc.start in (0, None) or loc.stop in (len(self), None):
freq = self.freq
arr = type(self._data)._simple_new(new_i8s, dtype=self.dtype, freq=freq)
return type(self)._simple_new(arr, name=self.name)
class DatetimeTimedeltaMixin(DatetimeIndexOpsMixin, Int64Index):
"""
Mixin class for methods shared by DatetimeIndex and TimedeltaIndex,
but not PeriodIndex
"""
# Compat for frequency inference, see GH#23789
_is_monotonic_increasing = Index.is_monotonic_increasing
_is_monotonic_decreasing = Index.is_monotonic_decreasing
_is_unique = Index.is_unique
def _set_freq(self, freq):
"""
Set the _freq attribute on our underlying DatetimeArray.
Parameters
----------
freq : DateOffset, None, or "infer"
"""
# GH#29843
if freq is None:
# Always valid
pass
elif len(self) == 0 and isinstance(freq, DateOffset):
# Always valid. In the TimedeltaIndex case, we assume this
# is a Tick offset.
pass
else:
# As an internal method, we can ensure this assertion always holds
assert freq == "infer"
freq = to_offset(self.inferred_freq)
self._data._freq = freq
def _shallow_copy(self, values=None, **kwargs):
if values is None:
values = self._data
if isinstance(values, type(self)):
values = values._data
if isinstance(values, np.ndarray):
# TODO: We would rather not get here
if kwargs.get("freq") is not None:
raise ValueError(kwargs)
values = type(self._data)(values, dtype=self.dtype)
attributes = self._get_attributes_dict()
if "freq" not in kwargs and self.freq is not None:
if isinstance(values, (DatetimeArray, TimedeltaArray)):
if values.freq is None:
del attributes["freq"]
attributes.update(kwargs)
return type(self)._simple_new(values, **attributes)
# --------------------------------------------------------------------
# Set Operation Methods
@Appender(Index.difference.__doc__)
def difference(self, other, sort=None):
new_idx = super().difference(other, sort=sort)
new_idx._set_freq(None)
return new_idx
def intersection(self, other, sort=False):
"""
Specialized intersection for DatetimeIndex/TimedeltaIndex.
May be much faster than Index.intersection
Parameters
----------
other : Same type as self or array-like
sort : False or None, default False
Sort the resulting index if possible.
.. versionadded:: 0.24.0
.. versionchanged:: 0.24.1
Changed the default to ``False`` to match the behaviour
from before 0.24.0.
.. versionchanged:: 0.25.0
The `sort` keyword is added
Returns
-------
y : Index or same type as self
"""
self._validate_sort_keyword(sort)
self._assert_can_do_setop(other)
if self.equals(other):
return self._get_reconciled_name_object(other)
if len(self) == 0:
return self.copy()
if len(other) == 0:
return other.copy()
if not isinstance(other, type(self)):
result = Index.intersection(self, other, sort=sort)
if isinstance(result, type(self)):
if result.freq is None:
result._set_freq("infer")
return result
elif (
other.freq is None
or self.freq is None
or other.freq != self.freq
or not other.freq.is_anchored()
or (not self.is_monotonic or not other.is_monotonic)
):
result = Index.intersection(self, other, sort=sort)
# Invalidate the freq of `result`, which may not be correct at
# this point, depending on the values.
result._set_freq(None)
result = self._shallow_copy(
result._data, name=result.name, dtype=result.dtype, freq=None
)
if result.freq is None:
result._set_freq("infer")
return result
# to make our life easier, "sort" the two ranges
if self[0] <= other[0]:
left, right = self, other
else:
left, right = other, self
# after sorting, the intersection always starts with the right index
# and ends with the index of which the last elements is smallest
end = min(left[-1], right[-1])
start = right[0]
if end < start:
return type(self)(data=[])
else:
lslice = slice(*left.slice_locs(start, end))
left_chunk = left.values[lslice]
return self._shallow_copy(left_chunk)
def _can_fast_union(self, other) -> bool:
if not isinstance(other, type(self)):
return False
freq = self.freq
if freq is None or freq != other.freq:
return False
if not self.is_monotonic or not other.is_monotonic:
return False
if len(self) == 0 or len(other) == 0:
return True
# to make our life easier, "sort" the two ranges
if self[0] <= other[0]:
left, right = self, other
else:
left, right = other, self
right_start = right[0]
left_end = left[-1]
# Only need to "adjoin", not overlap
try:
return (right_start == left_end + freq) or right_start in left
except ValueError:
# if we are comparing a freq that does not propagate timezones
# this will raise
return False
def _fast_union(self, other, sort=None):
if len(other) == 0:
return self.view(type(self))
if len(self) == 0:
return other.view(type(self))
# to make our life easier, "sort" the two ranges
if self[0] <= other[0]:
left, right = self, other
elif sort is False:
# TDIs are not in the "correct" order and we don't want
# to sort but want to remove overlaps
left, right = self, other
left_start = left[0]
loc = right.searchsorted(left_start, side="left")
right_chunk = right.values[:loc]
dates = concat_compat((left.values, right_chunk))
return self._shallow_copy(dates)
else:
left, right = other, self
left_end = left[-1]
right_end = right[-1]
# concatenate
if left_end < right_end:
loc = right.searchsorted(left_end, side="right")
right_chunk = right.values[loc:]
dates = concat_compat((left.values, right_chunk))
return self._shallow_copy(dates)
else:
return left
def _union(self, other, sort):
if not len(other) or self.equals(other) or not len(self):
return super()._union(other, sort=sort)
# We are called by `union`, which is responsible for this validation
assert isinstance(other, type(self))
this, other = self._maybe_utc_convert(other)
if this._can_fast_union(other):
result = this._fast_union(other, sort=sort)
if result.freq is None:
result._set_freq("infer")
return result
else:
i8self = Int64Index._simple_new(self.asi8, name=self.name)
i8other = Int64Index._simple_new(other.asi8, name=other.name)
i8result = i8self._union(i8other, sort=sort)
result = type(self)(i8result, dtype=self.dtype, freq="infer")
return result
# --------------------------------------------------------------------
# Join Methods
_join_precedence = 10
_inner_indexer = _join_i8_wrapper(libjoin.inner_join_indexer)
_outer_indexer = _join_i8_wrapper(libjoin.outer_join_indexer)
_left_indexer = _join_i8_wrapper(libjoin.left_join_indexer)
_left_indexer_unique = _join_i8_wrapper(
libjoin.left_join_indexer_unique, with_indexers=False
)
def join(
self, other, how: str = "left", level=None, return_indexers=False, sort=False
):
"""
See Index.join
"""
if self._is_convertible_to_index_for_join(other):
try:
other = type(self)(other)
except (TypeError, ValueError):
pass
this, other = self._maybe_utc_convert(other)
return Index.join(
this,
other,
how=how,
level=level,
return_indexers=return_indexers,
sort=sort,
)
def _maybe_utc_convert(self, other):
this = self
if not hasattr(self, "tz"):
return this, other
if isinstance(other, type(self)):
if self.tz is not None:
if other.tz is None:
raise TypeError("Cannot join tz-naive with tz-aware DatetimeIndex")
elif other.tz is not None:
raise TypeError("Cannot join tz-naive with tz-aware DatetimeIndex")
if not timezones.tz_compare(self.tz, other.tz):
this = self.tz_convert("UTC")
other = other.tz_convert("UTC")
return this, other
@classmethod
def _is_convertible_to_index_for_join(cls, other: Index) -> bool:
"""
return a boolean whether I can attempt conversion to a
DatetimeIndex/TimedeltaIndex
"""
if isinstance(other, cls):
return False
elif len(other) > 0 and other.inferred_type not in (
"floating",
"mixed-integer",
"integer",
"integer-na",
"mixed-integer-float",
"mixed",
):
return True
return False
def _wrap_joined_index(self, joined, other):
name = get_op_result_name(self, other)
if self._can_fast_union(other):
joined = self._shallow_copy(joined)
joined.name = name
return joined
else:
kwargs = {}
if hasattr(self, "tz"):
kwargs["tz"] = getattr(other, "tz", None)
return type(self)._simple_new(joined, name, **kwargs)
# --------------------------------------------------------------------
# List-Like Methods
def insert(self, loc, item):
"""
Make new Index inserting new item at location
Parameters
----------
loc : int
item : object
if not either a Python datetime or a numpy integer-like, returned
Index dtype will be object rather than datetime.
Returns
-------
new_index : Index
"""
if isinstance(item, self._data._recognized_scalars):
item = self._data._scalar_type(item)
elif is_valid_nat_for_dtype(item, self.dtype):
# GH 18295
item = self._na_value
elif is_scalar(item) and isna(item):
raise TypeError(
f"cannot insert {type(self).__name__} with incompatible label"
)
freq = None
if isinstance(item, self._data._scalar_type) or item is NaT:
self._data._check_compatible_with(item, setitem=True)
# check freq can be preserved on edge cases
if self.size and self.freq is not None:
if item is NaT:
pass
elif (loc == 0 or loc == -len(self)) and item + self.freq == self[0]:
freq = self.freq
elif (loc == len(self)) and item - self.freq == self[-1]:
freq = self.freq
item = item.asm8
try:
new_i8s = np.concatenate(
(self[:loc].asi8, [item.view(np.int64)], self[loc:].asi8)
)
arr = type(self._data)._simple_new(new_i8s, dtype=self.dtype, freq=freq)
return type(self)._simple_new(arr, name=self.name)
except (AttributeError, TypeError):
# fall back to object index
if isinstance(item, str):
return self.astype(object).insert(loc, item)
raise TypeError(
f"cannot insert {type(self).__name__} with incompatible label"
)