-
-
Notifications
You must be signed in to change notification settings - Fork 18.2k
/
Copy pathgil.py
327 lines (244 loc) · 7.96 KB
/
gil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from functools import wraps
import threading
import numpy as np
from pandas import (
DataFrame,
Index,
Series,
date_range,
factorize,
read_csv,
)
from pandas.core.algorithms import take_nd
try:
from pandas import (
rolling_kurt,
rolling_max,
rolling_mean,
rolling_median,
rolling_min,
rolling_skew,
rolling_std,
rolling_var,
)
have_rolling_methods = True
except ImportError:
have_rolling_methods = False
try:
from pandas._libs import algos
except ImportError:
from pandas import algos
from .pandas_vb_common import BaseIO # isort:skip
def test_parallel(num_threads=2, kwargs_list=None):
"""
Decorator to run the same function multiple times in parallel.
Parameters
----------
num_threads : int, optional
The number of times the function is run in parallel.
kwargs_list : list of dicts, optional
The list of kwargs to update original
function kwargs on different threads.
Notes
-----
This decorator does not pass the return value of the decorated function.
Original from scikit-image:
https://github.com/scikit-image/scikit-image/pull/1519
"""
assert num_threads > 0
has_kwargs_list = kwargs_list is not None
if has_kwargs_list:
assert len(kwargs_list) == num_threads
def wrapper(func):
@wraps(func)
def inner(*args, **kwargs):
if has_kwargs_list:
update_kwargs = lambda i: dict(kwargs, **kwargs_list[i])
else:
update_kwargs = lambda i: kwargs
threads = []
for i in range(num_threads):
updated_kwargs = update_kwargs(i)
thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs)
threads.append(thread)
for thread in threads:
thread.start()
for thread in threads:
thread.join()
return inner
return wrapper
class ParallelGroupbyMethods:
params = ([2, 4, 8], ["count", "last", "max", "mean", "min", "prod", "sum", "var"])
param_names = ["threads", "method"]
def setup(self, threads, method):
N = 10**6
ngroups = 10**3
df = DataFrame(
{"key": np.random.randint(0, ngroups, size=N), "data": np.random.randn(N)}
)
@test_parallel(num_threads=threads)
def parallel():
getattr(df.groupby("key")["data"], method)()
self.parallel = parallel
def loop():
getattr(df.groupby("key")["data"], method)()
self.loop = loop
def time_parallel(self, threads, method):
self.parallel()
def time_loop(self, threads, method):
for i in range(threads):
self.loop()
class ParallelGroups:
params = [2, 4, 8]
param_names = ["threads"]
def setup(self, threads):
size = 2**22
ngroups = 10**3
data = Series(np.random.randint(0, ngroups, size=size))
@test_parallel(num_threads=threads)
def get_groups():
data.groupby(data).groups
self.get_groups = get_groups
def time_get_groups(self, threads):
self.get_groups()
class ParallelTake1D:
params = ["int64", "float64"]
param_names = ["dtype"]
def setup(self, dtype):
N = 10**6
df = DataFrame({"col": np.arange(N, dtype=dtype)})
indexer = np.arange(100, len(df) - 100)
@test_parallel(num_threads=2)
def parallel_take1d():
take_nd(df["col"].values, indexer)
self.parallel_take1d = parallel_take1d
def time_take1d(self, dtype):
self.parallel_take1d()
class ParallelKth:
# This depends exclusively on code in _libs/, could go in libs.py
number = 1
repeat = 5
def setup(self):
N = 10**7
k = 5 * 10**5
kwargs_list = [{"arr": np.random.randn(N)}, {"arr": np.random.randn(N)}]
@test_parallel(num_threads=2, kwargs_list=kwargs_list)
def parallel_kth_smallest(arr):
algos.kth_smallest(arr, k)
self.parallel_kth_smallest = parallel_kth_smallest
def time_kth_smallest(self):
self.parallel_kth_smallest()
class ParallelDatetimeFields:
def setup(self):
N = 10**6
self.dti = date_range("1900-01-01", periods=N, freq="min")
self.period = self.dti.to_period("D")
def time_datetime_field_year(self):
@test_parallel(num_threads=2)
def run(dti):
dti.year
run(self.dti)
def time_datetime_field_day(self):
@test_parallel(num_threads=2)
def run(dti):
dti.day
run(self.dti)
def time_datetime_field_daysinmonth(self):
@test_parallel(num_threads=2)
def run(dti):
dti.days_in_month
run(self.dti)
def time_datetime_field_normalize(self):
@test_parallel(num_threads=2)
def run(dti):
dti.normalize()
run(self.dti)
def time_datetime_to_period(self):
@test_parallel(num_threads=2)
def run(dti):
dti.to_period("s")
run(self.dti)
def time_period_to_datetime(self):
@test_parallel(num_threads=2)
def run(period):
period.to_timestamp()
run(self.period)
class ParallelRolling:
params = ["median", "mean", "min", "max", "var", "skew", "kurt", "std"]
param_names = ["method"]
def setup(self, method):
win = 100
arr = np.random.rand(100000)
if hasattr(DataFrame, "rolling"):
df = DataFrame(arr).rolling(win)
@test_parallel(num_threads=2)
def parallel_rolling():
getattr(df, method)()
self.parallel_rolling = parallel_rolling
elif have_rolling_methods:
rolling = {
"median": rolling_median,
"mean": rolling_mean,
"min": rolling_min,
"max": rolling_max,
"var": rolling_var,
"skew": rolling_skew,
"kurt": rolling_kurt,
"std": rolling_std,
}
@test_parallel(num_threads=2)
def parallel_rolling():
rolling[method](arr, win)
self.parallel_rolling = parallel_rolling
else:
raise NotImplementedError
def time_rolling(self, method):
self.parallel_rolling()
class ParallelReadCSV(BaseIO):
number = 1
repeat = 5
params = ["float", "object", "datetime"]
param_names = ["dtype"]
def setup(self, dtype):
rows = 10000
cols = 50
if dtype == "float":
df = DataFrame(np.random.randn(rows, cols))
elif dtype == "datetime":
df = DataFrame(
np.random.randn(rows, cols), index=date_range("1/1/2000", periods=rows)
)
elif dtype == "object":
df = DataFrame(
"foo", index=range(rows), columns=["object%03d" for _ in range(5)]
)
else:
raise NotImplementedError
self.fname = f"__test_{dtype}__.csv"
df.to_csv(self.fname)
@test_parallel(num_threads=2)
def parallel_read_csv():
read_csv(self.fname)
self.parallel_read_csv = parallel_read_csv
def time_read_csv(self, dtype):
self.parallel_read_csv()
class ParallelFactorize:
number = 1
repeat = 5
params = [2, 4, 8]
param_names = ["threads"]
def setup(self, threads):
strings = Index([f"i-{i}" for i in range(100000)], dtype=object)
@test_parallel(num_threads=threads)
def parallel():
factorize(strings)
self.parallel = parallel
def loop():
factorize(strings)
self.loop = loop
def time_parallel(self, threads):
self.parallel()
def time_loop(self, threads):
for i in range(threads):
self.loop()
from .pandas_vb_common import setup # noqa: F401 isort:skip