-
-
Notifications
You must be signed in to change notification settings - Fork 18.2k
/
Copy pathtest_numeric.py
1497 lines (1230 loc) · 52.3 KB
/
test_numeric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Arithmetic tests for DataFrame/Series/Index/Array classes that should
# behave identically.
# Specifically for numeric dtypes
from __future__ import annotations
from collections import abc
from datetime import timedelta
from decimal import Decimal
import operator
import numpy as np
import pytest
import pandas as pd
from pandas import (
Index,
RangeIndex,
Series,
Timedelta,
TimedeltaIndex,
array,
)
import pandas._testing as tm
from pandas.core import ops
from pandas.core.computation import expressions as expr
from pandas.tests.arithmetic.common import (
assert_invalid_addsub_type,
assert_invalid_comparison,
)
@pytest.fixture(autouse=True, params=[0, 1000000], ids=["numexpr", "python"])
def switch_numexpr_min_elements(request, monkeypatch):
with monkeypatch.context() as m:
m.setattr(expr, "_MIN_ELEMENTS", request.param)
yield request.param
@pytest.fixture(params=[Index, Series, tm.to_array])
def box_pandas_1d_array(request):
"""
Fixture to test behavior for Index, Series and tm.to_array classes
"""
return request.param
def adjust_negative_zero(zero, expected):
"""
Helper to adjust the expected result if we are dividing by -0.0
as opposed to 0.0
"""
if np.signbit(np.array(zero)).any():
# All entries in the `zero` fixture should be either
# all-negative or no-negative.
assert np.signbit(np.array(zero)).all()
expected *= -1
return expected
def compare_op(series, other, op):
left = np.abs(series) if op in (ops.rpow, operator.pow) else series
right = np.abs(other) if op in (ops.rpow, operator.pow) else other
cython_or_numpy = op(left, right)
python = left.combine(right, op)
if isinstance(other, Series) and not other.index.equals(series.index):
python.index = python.index._with_freq(None)
tm.assert_series_equal(cython_or_numpy, python)
# TODO: remove this kludge once mypy stops giving false positives here
# List comprehension has incompatible type List[PandasObject]; expected List[RangeIndex]
# See GH#29725
_ldtypes = ["i1", "i2", "i4", "i8", "u1", "u2", "u4", "u8", "f2", "f4", "f8"]
lefts: list[Index | Series] = [RangeIndex(10, 40, 10)]
lefts.extend([Series([10, 20, 30], dtype=dtype) for dtype in _ldtypes])
lefts.extend([Index([10, 20, 30], dtype=dtype) for dtype in _ldtypes if dtype != "f2"])
# ------------------------------------------------------------------
# Comparisons
class TestNumericComparisons:
def test_operator_series_comparison_zerorank(self):
# GH#13006
result = np.float64(0) > Series([1, 2, 3])
expected = 0.0 > Series([1, 2, 3])
tm.assert_series_equal(result, expected)
result = Series([1, 2, 3]) < np.float64(0)
expected = Series([1, 2, 3]) < 0.0
tm.assert_series_equal(result, expected)
result = np.array([0, 1, 2])[0] > Series([0, 1, 2])
expected = 0.0 > Series([1, 2, 3])
tm.assert_series_equal(result, expected)
def test_df_numeric_cmp_dt64_raises(self, box_with_array, fixed_now_ts):
# GH#8932, GH#22163
ts = fixed_now_ts
obj = np.array(range(5))
obj = tm.box_expected(obj, box_with_array)
assert_invalid_comparison(obj, ts, box_with_array)
def test_compare_invalid(self):
# GH#8058
# ops testing
a = Series(np.random.default_rng(2).standard_normal(5), name=0)
b = Series(np.random.default_rng(2).standard_normal(5))
b.name = pd.Timestamp("2000-01-01")
tm.assert_series_equal(a / b, 1 / (b / a))
def test_numeric_cmp_string_numexpr_path(self, box_with_array, monkeypatch):
# GH#36377, GH#35700
box = box_with_array
xbox = box if box is not Index else np.ndarray
obj = Series(np.random.default_rng(2).standard_normal(51))
obj = tm.box_expected(obj, box, transpose=False)
with monkeypatch.context() as m:
m.setattr(expr, "_MIN_ELEMENTS", 50)
result = obj == "a"
expected = Series(np.zeros(51, dtype=bool))
expected = tm.box_expected(expected, xbox, transpose=False)
tm.assert_equal(result, expected)
with monkeypatch.context() as m:
m.setattr(expr, "_MIN_ELEMENTS", 50)
result = obj != "a"
tm.assert_equal(result, ~expected)
msg = "Invalid comparison between dtype=float64 and str"
with pytest.raises(TypeError, match=msg):
obj < "a"
# ------------------------------------------------------------------
# Numeric dtypes Arithmetic with Datetime/Timedelta Scalar
class TestNumericArraylikeArithmeticWithDatetimeLike:
@pytest.mark.parametrize("box_cls", [np.array, Index, Series])
@pytest.mark.parametrize(
"left", lefts, ids=lambda x: type(x).__name__ + str(x.dtype)
)
def test_mul_td64arr(self, left, box_cls):
# GH#22390
right = np.array([1, 2, 3], dtype="m8[s]")
right = box_cls(right)
expected = TimedeltaIndex(["10s", "40s", "90s"], dtype=right.dtype)
if isinstance(left, Series) or box_cls is Series:
expected = Series(expected)
assert expected.dtype == right.dtype
result = left * right
tm.assert_equal(result, expected)
result = right * left
tm.assert_equal(result, expected)
@pytest.mark.parametrize("box_cls", [np.array, Index, Series])
@pytest.mark.parametrize(
"left", lefts, ids=lambda x: type(x).__name__ + str(x.dtype)
)
def test_div_td64arr(self, left, box_cls):
# GH#22390
right = np.array([10, 40, 90], dtype="m8[s]")
right = box_cls(right)
expected = TimedeltaIndex(["1s", "2s", "3s"], dtype=right.dtype)
if isinstance(left, Series) or box_cls is Series:
expected = Series(expected)
assert expected.dtype == right.dtype
result = right / left
tm.assert_equal(result, expected)
result = right // left
tm.assert_equal(result, expected)
# (true_) needed for min-versions build 2022-12-26
msg = "ufunc '(true_)?divide' cannot use operands with types"
with pytest.raises(TypeError, match=msg):
left / right
msg = "ufunc 'floor_divide' cannot use operands with types"
with pytest.raises(TypeError, match=msg):
left // right
# TODO: also test Tick objects;
# see test_numeric_arr_rdiv_tdscalar for note on these failing
@pytest.mark.parametrize(
"scalar_td",
[
Timedelta(days=1),
Timedelta(days=1).to_timedelta64(),
Timedelta(days=1).to_pytimedelta(),
Timedelta(days=1).to_timedelta64().astype("timedelta64[s]"),
Timedelta(days=1).to_timedelta64().astype("timedelta64[ms]"),
],
ids=lambda x: type(x).__name__,
)
def test_numeric_arr_mul_tdscalar(self, scalar_td, numeric_idx, box_with_array):
# GH#19333
box = box_with_array
index = numeric_idx
expected = TimedeltaIndex([Timedelta(days=n) for n in range(len(index))])
if isinstance(scalar_td, np.timedelta64):
dtype = scalar_td.dtype
expected = expected.astype(dtype)
elif type(scalar_td) is timedelta:
expected = expected.astype("m8[us]")
index = tm.box_expected(index, box)
expected = tm.box_expected(expected, box)
result = index * scalar_td
tm.assert_equal(result, expected)
commute = scalar_td * index
tm.assert_equal(commute, expected)
@pytest.mark.parametrize(
"scalar_td",
[
Timedelta(days=1),
Timedelta(days=1).to_timedelta64(),
Timedelta(days=1).to_pytimedelta(),
],
ids=lambda x: type(x).__name__,
)
@pytest.mark.parametrize("dtype", [np.int64, np.float64])
def test_numeric_arr_mul_tdscalar_numexpr_path(
self, dtype, scalar_td, box_with_array
):
# GH#44772 for the float64 case
box = box_with_array
arr_i8 = np.arange(2 * 10**4).astype(np.int64, copy=False)
arr = arr_i8.astype(dtype, copy=False)
obj = tm.box_expected(arr, box, transpose=False)
expected = arr_i8.view("timedelta64[D]").astype("timedelta64[ns]")
if type(scalar_td) is timedelta:
expected = expected.astype("timedelta64[us]")
expected = tm.box_expected(expected, box, transpose=False)
result = obj * scalar_td
tm.assert_equal(result, expected)
result = scalar_td * obj
tm.assert_equal(result, expected)
def test_numeric_arr_rdiv_tdscalar(self, three_days, numeric_idx, box_with_array):
box = box_with_array
index = numeric_idx[1:3]
expected = TimedeltaIndex(["3 Days", "36 Hours"])
if isinstance(three_days, np.timedelta64):
dtype = three_days.dtype
if dtype < np.dtype("m8[s]"):
# i.e. resolution is lower -> use lowest supported resolution
dtype = np.dtype("m8[s]")
expected = expected.astype(dtype)
elif type(three_days) is timedelta:
expected = expected.astype("m8[us]")
index = tm.box_expected(index, box)
expected = tm.box_expected(expected, box)
result = three_days / index
tm.assert_equal(result, expected)
msg = "cannot use operands with types dtype"
with pytest.raises(TypeError, match=msg):
index / three_days
@pytest.mark.parametrize(
"other",
[
Timedelta(hours=31),
Timedelta(hours=31).to_pytimedelta(),
Timedelta(hours=31).to_timedelta64(),
Timedelta(hours=31).to_timedelta64().astype("m8[h]"),
np.timedelta64("NaT"),
np.timedelta64("NaT", "D"),
pd.offsets.Minute(3),
pd.offsets.Second(0),
# GH#28080 numeric+datetimelike should raise; Timestamp used
# to raise NullFrequencyError but that behavior was removed in 1.0
pd.Timestamp("2021-01-01", tz="Asia/Tokyo"),
pd.Timestamp("2021-01-01"),
pd.Timestamp("2021-01-01").to_pydatetime(),
pd.Timestamp("2021-01-01", tz="UTC").to_pydatetime(),
pd.Timestamp("2021-01-01").to_datetime64(),
np.datetime64("NaT", "ns"),
pd.NaT,
],
ids=repr,
)
def test_add_sub_datetimedeltalike_invalid(
self, numeric_idx, other, box_with_array
):
box = box_with_array
left = tm.box_expected(numeric_idx, box)
msg = "|".join(
[
"unsupported operand type",
"Addition/subtraction of integers and integer-arrays",
"Instead of adding/subtracting",
"cannot use operands with types dtype",
"Concatenation operation is not implemented for NumPy arrays",
"Cannot (add|subtract) NaT (to|from) ndarray",
# pd.array vs np.datetime64 case
r"operand type\(s\) all returned NotImplemented from __array_ufunc__",
"can only perform ops with numeric values",
"cannot subtract DatetimeArray from ndarray",
# pd.Timedelta(1) + Index([0, 1, 2])
"Cannot add or subtract Timedelta from integers",
]
)
assert_invalid_addsub_type(left, other, msg)
# ------------------------------------------------------------------
# Arithmetic
class TestDivisionByZero:
def test_div_zero(self, zero, numeric_idx):
idx = numeric_idx
expected = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
# We only adjust for Index, because Series does not yet apply
# the adjustment correctly.
expected2 = adjust_negative_zero(zero, expected)
result = idx / zero
tm.assert_index_equal(result, expected2)
ser_compat = Series(idx).astype("i8") / np.array(zero).astype("i8")
tm.assert_series_equal(ser_compat, Series(expected))
def test_floordiv_zero(self, zero, numeric_idx):
idx = numeric_idx
expected = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
# We only adjust for Index, because Series does not yet apply
# the adjustment correctly.
expected2 = adjust_negative_zero(zero, expected)
result = idx // zero
tm.assert_index_equal(result, expected2)
ser_compat = Series(idx).astype("i8") // np.array(zero).astype("i8")
tm.assert_series_equal(ser_compat, Series(expected))
def test_mod_zero(self, zero, numeric_idx):
idx = numeric_idx
expected = Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64)
result = idx % zero
tm.assert_index_equal(result, expected)
ser_compat = Series(idx).astype("i8") % np.array(zero).astype("i8")
tm.assert_series_equal(ser_compat, Series(result))
def test_divmod_zero(self, zero, numeric_idx):
idx = numeric_idx
exleft = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
exright = Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64)
exleft = adjust_negative_zero(zero, exleft)
result = divmod(idx, zero)
tm.assert_index_equal(result[0], exleft)
tm.assert_index_equal(result[1], exright)
@pytest.mark.parametrize("op", [operator.truediv, operator.floordiv])
def test_div_negative_zero(self, zero, numeric_idx, op):
# Check that -1 / -0.0 returns np.inf, not -np.inf
if numeric_idx.dtype == np.uint64:
pytest.skip(f"Not relevant for {numeric_idx.dtype}")
idx = numeric_idx - 3
expected = Index([-np.inf, -np.inf, -np.inf, np.nan, np.inf], dtype=np.float64)
expected = adjust_negative_zero(zero, expected)
result = op(idx, zero)
tm.assert_index_equal(result, expected)
# ------------------------------------------------------------------
@pytest.mark.parametrize("dtype1", [np.int64, np.float64, np.uint64])
def test_ser_div_ser(
self,
switch_numexpr_min_elements,
dtype1,
any_real_numpy_dtype,
):
# no longer do integer div for any ops, but deal with the 0's
dtype2 = any_real_numpy_dtype
first = Series([3, 4, 5, 8], name="first").astype(dtype1)
second = Series([0, 0, 0, 3], name="second").astype(dtype2)
with np.errstate(all="ignore"):
expected = Series(
first.values.astype(np.float64) / second.values,
dtype="float64",
name=None,
)
expected.iloc[0:3] = np.inf
if first.dtype == "int64" and second.dtype == "float32":
# when using numexpr, the casting rules are slightly different
# and int64/float32 combo results in float32 instead of float64
if expr.USE_NUMEXPR and switch_numexpr_min_elements == 0:
expected = expected.astype("float32")
result = first / second
tm.assert_series_equal(result, expected)
assert not result.equals(second / first)
@pytest.mark.parametrize("dtype1", [np.int64, np.float64, np.uint64])
def test_ser_divmod_zero(self, dtype1, any_real_numpy_dtype):
# GH#26987
dtype2 = any_real_numpy_dtype
left = Series([1, 1]).astype(dtype1)
right = Series([0, 2]).astype(dtype2)
# GH#27321 pandas convention is to set 1 // 0 to np.inf, as opposed
# to numpy which sets to np.nan; patch `expected[0]` below
expected = left // right, left % right
expected = list(expected)
expected[0] = expected[0].astype(np.float64)
expected[0][0] = np.inf
result = divmod(left, right)
tm.assert_series_equal(result[0], expected[0])
tm.assert_series_equal(result[1], expected[1])
# rdivmod case
result = divmod(left.values, right)
tm.assert_series_equal(result[0], expected[0])
tm.assert_series_equal(result[1], expected[1])
def test_ser_divmod_inf(self):
left = Series([np.inf, 1.0])
right = Series([np.inf, 2.0])
expected = left // right, left % right
result = divmod(left, right)
tm.assert_series_equal(result[0], expected[0])
tm.assert_series_equal(result[1], expected[1])
# rdivmod case
result = divmod(left.values, right)
tm.assert_series_equal(result[0], expected[0])
tm.assert_series_equal(result[1], expected[1])
def test_rdiv_zero_compat(self):
# GH#8674
zero_array = np.array([0] * 5)
data = np.random.default_rng(2).standard_normal(5)
expected = Series([0.0] * 5)
result = zero_array / Series(data)
tm.assert_series_equal(result, expected)
result = Series(zero_array) / data
tm.assert_series_equal(result, expected)
result = Series(zero_array) / Series(data)
tm.assert_series_equal(result, expected)
def test_div_zero_inf_signs(self):
# GH#9144, inf signing
ser = Series([-1, 0, 1], name="first")
expected = Series([-np.inf, np.nan, np.inf], name="first")
result = ser / 0
tm.assert_series_equal(result, expected)
def test_rdiv_zero(self):
# GH#9144
ser = Series([-1, 0, 1], name="first")
expected = Series([0.0, np.nan, 0.0], name="first")
result = 0 / ser
tm.assert_series_equal(result, expected)
def test_floordiv_div(self):
# GH#9144
ser = Series([-1, 0, 1], name="first")
result = ser // 0
expected = Series([-np.inf, np.nan, np.inf], name="first")
tm.assert_series_equal(result, expected)
def test_df_div_zero_df(self):
# integer div, but deal with the 0's (GH#9144)
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
result = df / df
first = Series([1.0, 1.0, 1.0, 1.0])
second = Series([np.nan, np.nan, np.nan, 1])
expected = pd.DataFrame({"first": first, "second": second})
tm.assert_frame_equal(result, expected)
def test_df_div_zero_array(self):
# integer div, but deal with the 0's (GH#9144)
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
first = Series([1.0, 1.0, 1.0, 1.0])
second = Series([np.nan, np.nan, np.nan, 1])
expected = pd.DataFrame({"first": first, "second": second})
with np.errstate(all="ignore"):
arr = df.values.astype("float") / df.values
result = pd.DataFrame(arr, index=df.index, columns=df.columns)
tm.assert_frame_equal(result, expected)
def test_df_div_zero_int(self):
# integer div, but deal with the 0's (GH#9144)
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
result = df / 0
expected = pd.DataFrame(np.inf, index=df.index, columns=df.columns)
expected.iloc[0:3, 1] = np.nan
tm.assert_frame_equal(result, expected)
# numpy has a slightly different (wrong) treatment
with np.errstate(all="ignore"):
arr = df.values.astype("float64") / 0
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns)
tm.assert_frame_equal(result2, expected)
def test_df_div_zero_series_does_not_commute(self):
# integer div, but deal with the 0's (GH#9144)
df = pd.DataFrame(np.random.default_rng(2).standard_normal((10, 5)))
ser = df[0]
res = ser / df
res2 = df / ser
assert not res.fillna(0).equals(res2.fillna(0))
# ------------------------------------------------------------------
# Mod By Zero
def test_df_mod_zero_df(self, using_array_manager):
# GH#3590, modulo as ints
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
# this is technically wrong, as the integer portion is coerced to float
first = Series([0, 0, 0, 0])
if not using_array_manager:
# INFO(ArrayManager) BlockManager doesn't preserve dtype per column
# while ArrayManager performs op column-wisedoes and thus preserves
# dtype if possible
first = first.astype("float64")
second = Series([np.nan, np.nan, np.nan, 0])
expected = pd.DataFrame({"first": first, "second": second})
result = df % df
tm.assert_frame_equal(result, expected)
# GH#38939 If we dont pass copy=False, df is consolidated and
# result["first"] is float64 instead of int64
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}, copy=False)
first = Series([0, 0, 0, 0], dtype="int64")
second = Series([np.nan, np.nan, np.nan, 0])
expected = pd.DataFrame({"first": first, "second": second})
result = df % df
tm.assert_frame_equal(result, expected)
def test_df_mod_zero_array(self):
# GH#3590, modulo as ints
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
# this is technically wrong, as the integer portion is coerced to float
# ###
first = Series([0, 0, 0, 0], dtype="float64")
second = Series([np.nan, np.nan, np.nan, 0])
expected = pd.DataFrame({"first": first, "second": second})
# numpy has a slightly different (wrong) treatment
with np.errstate(all="ignore"):
arr = df.values % df.values
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns, dtype="float64")
result2.iloc[0:3, 1] = np.nan
tm.assert_frame_equal(result2, expected)
def test_df_mod_zero_int(self):
# GH#3590, modulo as ints
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
result = df % 0
expected = pd.DataFrame(np.nan, index=df.index, columns=df.columns)
tm.assert_frame_equal(result, expected)
# numpy has a slightly different (wrong) treatment
with np.errstate(all="ignore"):
arr = df.values.astype("float64") % 0
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns)
tm.assert_frame_equal(result2, expected)
def test_df_mod_zero_series_does_not_commute(self):
# GH#3590, modulo as ints
# not commutative with series
df = pd.DataFrame(np.random.default_rng(2).standard_normal((10, 5)))
ser = df[0]
res = ser % df
res2 = df % ser
assert not res.fillna(0).equals(res2.fillna(0))
class TestMultiplicationDivision:
# __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__
# for non-timestamp/timedelta/period dtypes
def test_divide_decimal(self, box_with_array):
# resolves issue GH#9787
box = box_with_array
ser = Series([Decimal(10)])
expected = Series([Decimal(5)])
ser = tm.box_expected(ser, box)
expected = tm.box_expected(expected, box)
result = ser / Decimal(2)
tm.assert_equal(result, expected)
result = ser // Decimal(2)
tm.assert_equal(result, expected)
def test_div_equiv_binop(self):
# Test Series.div as well as Series.__div__
# float/integer issue
# GH#7785
first = Series([1, 0], name="first")
second = Series([-0.01, -0.02], name="second")
expected = Series([-0.01, -np.inf])
result = second.div(first)
tm.assert_series_equal(result, expected, check_names=False)
result = second / first
tm.assert_series_equal(result, expected)
def test_div_int(self, numeric_idx):
idx = numeric_idx
result = idx / 1
expected = idx.astype("float64")
tm.assert_index_equal(result, expected)
result = idx / 2
expected = Index(idx.values / 2)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("op", [operator.mul, ops.rmul, operator.floordiv])
def test_mul_int_identity(self, op, numeric_idx, box_with_array):
idx = numeric_idx
idx = tm.box_expected(idx, box_with_array)
result = op(idx, 1)
tm.assert_equal(result, idx)
def test_mul_int_array(self, numeric_idx):
idx = numeric_idx
didx = idx * idx
result = idx * np.array(5, dtype="int64")
tm.assert_index_equal(result, idx * 5)
arr_dtype = "uint64" if idx.dtype == np.uint64 else "int64"
result = idx * np.arange(5, dtype=arr_dtype)
tm.assert_index_equal(result, didx)
def test_mul_int_series(self, numeric_idx):
idx = numeric_idx
didx = idx * idx
arr_dtype = "uint64" if idx.dtype == np.uint64 else "int64"
result = idx * Series(np.arange(5, dtype=arr_dtype))
tm.assert_series_equal(result, Series(didx))
def test_mul_float_series(self, numeric_idx):
idx = numeric_idx
rng5 = np.arange(5, dtype="float64")
result = idx * Series(rng5 + 0.1)
expected = Series(rng5 * (rng5 + 0.1))
tm.assert_series_equal(result, expected)
def test_mul_index(self, numeric_idx):
idx = numeric_idx
result = idx * idx
tm.assert_index_equal(result, idx**2)
def test_mul_datelike_raises(self, numeric_idx):
idx = numeric_idx
msg = "cannot perform __rmul__ with this index type"
with pytest.raises(TypeError, match=msg):
idx * pd.date_range("20130101", periods=5)
def test_mul_size_mismatch_raises(self, numeric_idx):
idx = numeric_idx
msg = "operands could not be broadcast together"
with pytest.raises(ValueError, match=msg):
idx * idx[0:3]
with pytest.raises(ValueError, match=msg):
idx * np.array([1, 2])
@pytest.mark.parametrize("op", [operator.pow, ops.rpow])
def test_pow_float(self, op, numeric_idx, box_with_array):
# test power calculations both ways, GH#14973
box = box_with_array
idx = numeric_idx
expected = Index(op(idx.values, 2.0))
idx = tm.box_expected(idx, box)
expected = tm.box_expected(expected, box)
result = op(idx, 2.0)
tm.assert_equal(result, expected)
def test_modulo(self, numeric_idx, box_with_array):
# GH#9244
box = box_with_array
idx = numeric_idx
expected = Index(idx.values % 2)
idx = tm.box_expected(idx, box)
expected = tm.box_expected(expected, box)
result = idx % 2
tm.assert_equal(result, expected)
def test_divmod_scalar(self, numeric_idx):
idx = numeric_idx
result = divmod(idx, 2)
with np.errstate(all="ignore"):
div, mod = divmod(idx.values, 2)
expected = Index(div), Index(mod)
for r, e in zip(result, expected):
tm.assert_index_equal(r, e)
def test_divmod_ndarray(self, numeric_idx):
idx = numeric_idx
other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2
result = divmod(idx, other)
with np.errstate(all="ignore"):
div, mod = divmod(idx.values, other)
expected = Index(div), Index(mod)
for r, e in zip(result, expected):
tm.assert_index_equal(r, e)
def test_divmod_series(self, numeric_idx):
idx = numeric_idx
other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2
result = divmod(idx, Series(other))
with np.errstate(all="ignore"):
div, mod = divmod(idx.values, other)
expected = Series(div), Series(mod)
for r, e in zip(result, expected):
tm.assert_series_equal(r, e)
@pytest.mark.parametrize("other", [np.nan, 7, -23, 2.718, -3.14, np.inf])
def test_ops_np_scalar(self, other):
vals = np.random.default_rng(2).standard_normal((5, 3))
f = lambda x: pd.DataFrame(
x, index=list("ABCDE"), columns=["jim", "joe", "jolie"]
)
df = f(vals)
tm.assert_frame_equal(df / np.array(other), f(vals / other))
tm.assert_frame_equal(np.array(other) * df, f(vals * other))
tm.assert_frame_equal(df + np.array(other), f(vals + other))
tm.assert_frame_equal(np.array(other) - df, f(other - vals))
# TODO: This came from series.test.test_operators, needs cleanup
def test_operators_frame(self):
# rpow does not work with DataFrame
ts = tm.makeTimeSeries()
ts.name = "ts"
df = pd.DataFrame({"A": ts})
tm.assert_series_equal(ts + ts, ts + df["A"], check_names=False)
tm.assert_series_equal(ts**ts, ts ** df["A"], check_names=False)
tm.assert_series_equal(ts < ts, ts < df["A"], check_names=False)
tm.assert_series_equal(ts / ts, ts / df["A"], check_names=False)
# TODO: this came from tests.series.test_analytics, needs cleanup and
# de-duplication with test_modulo above
def test_modulo2(self):
with np.errstate(all="ignore"):
# GH#3590, modulo as ints
p = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
result = p["first"] % p["second"]
expected = Series(p["first"].values % p["second"].values, dtype="float64")
expected.iloc[0:3] = np.nan
tm.assert_series_equal(result, expected)
result = p["first"] % 0
expected = Series(np.nan, index=p.index, name="first")
tm.assert_series_equal(result, expected)
p = p.astype("float64")
result = p["first"] % p["second"]
expected = Series(p["first"].values % p["second"].values)
tm.assert_series_equal(result, expected)
p = p.astype("float64")
result = p["first"] % p["second"]
result2 = p["second"] % p["first"]
assert not result.equals(result2)
def test_modulo_zero_int(self):
# GH#9144
with np.errstate(all="ignore"):
s = Series([0, 1])
result = s % 0
expected = Series([np.nan, np.nan])
tm.assert_series_equal(result, expected)
result = 0 % s
expected = Series([np.nan, 0.0])
tm.assert_series_equal(result, expected)
class TestAdditionSubtraction:
# __add__, __sub__, __radd__, __rsub__, __iadd__, __isub__
# for non-timestamp/timedelta/period dtypes
@pytest.mark.parametrize(
"first, second, expected",
[
(
Series([1, 2, 3], index=list("ABC"), name="x"),
Series([2, 2, 2], index=list("ABD"), name="x"),
Series([3.0, 4.0, np.nan, np.nan], index=list("ABCD"), name="x"),
),
(
Series([1, 2, 3], index=list("ABC"), name="x"),
Series([2, 2, 2, 2], index=list("ABCD"), name="x"),
Series([3, 4, 5, np.nan], index=list("ABCD"), name="x"),
),
],
)
def test_add_series(self, first, second, expected):
# GH#1134
tm.assert_series_equal(first + second, expected)
tm.assert_series_equal(second + first, expected)
@pytest.mark.parametrize(
"first, second, expected",
[
(
pd.DataFrame({"x": [1, 2, 3]}, index=list("ABC")),
pd.DataFrame({"x": [2, 2, 2]}, index=list("ABD")),
pd.DataFrame({"x": [3.0, 4.0, np.nan, np.nan]}, index=list("ABCD")),
),
(
pd.DataFrame({"x": [1, 2, 3]}, index=list("ABC")),
pd.DataFrame({"x": [2, 2, 2, 2]}, index=list("ABCD")),
pd.DataFrame({"x": [3, 4, 5, np.nan]}, index=list("ABCD")),
),
],
)
def test_add_frames(self, first, second, expected):
# GH#1134
tm.assert_frame_equal(first + second, expected)
tm.assert_frame_equal(second + first, expected)
# TODO: This came from series.test.test_operators, needs cleanup
def test_series_frame_radd_bug(self, fixed_now_ts):
# GH#353
vals = Series(tm.makeStringIndex())
result = "foo_" + vals
expected = vals.map(lambda x: "foo_" + x)
tm.assert_series_equal(result, expected)
frame = pd.DataFrame({"vals": vals})
result = "foo_" + frame
expected = pd.DataFrame({"vals": vals.map(lambda x: "foo_" + x)})
tm.assert_frame_equal(result, expected)
ts = tm.makeTimeSeries()
ts.name = "ts"
# really raise this time
fix_now = fixed_now_ts.to_pydatetime()
msg = "|".join(
[
"unsupported operand type",
# wrong error message, see https://github.com/numpy/numpy/issues/18832
"Concatenation operation",
]
)
with pytest.raises(TypeError, match=msg):
fix_now + ts
with pytest.raises(TypeError, match=msg):
ts + fix_now
# TODO: This came from series.test.test_operators, needs cleanup
def test_datetime64_with_index(self):
# arithmetic integer ops with an index
ser = Series(np.random.default_rng(2).standard_normal(5))
expected = ser - ser.index.to_series()
result = ser - ser.index
tm.assert_series_equal(result, expected)
# GH#4629
# arithmetic datetime64 ops with an index
ser = Series(
pd.date_range("20130101", periods=5),
index=pd.date_range("20130101", periods=5),
)
expected = ser - ser.index.to_series()
result = ser - ser.index
tm.assert_series_equal(result, expected)
msg = "cannot subtract PeriodArray from DatetimeArray"
with pytest.raises(TypeError, match=msg):
# GH#18850
result = ser - ser.index.to_period()
df = pd.DataFrame(
np.random.default_rng(2).standard_normal((5, 2)),
index=pd.date_range("20130101", periods=5),
)
df["date"] = pd.Timestamp("20130102")
df["expected"] = df["date"] - df.index.to_series()
df["result"] = df["date"] - df.index
tm.assert_series_equal(df["result"], df["expected"], check_names=False)
# TODO: taken from tests.frame.test_operators, needs cleanup
def test_frame_operators(self, float_frame):
frame = float_frame
garbage = np.random.default_rng(2).random(4)
colSeries = Series(garbage, index=np.array(frame.columns))
idSum = frame + frame
seriesSum = frame + colSeries
for col, series in idSum.items():
for idx, val in series.items():
origVal = frame[col][idx] * 2
if not np.isnan(val):
assert val == origVal
else:
assert np.isnan(origVal)
for col, series in seriesSum.items():
for idx, val in series.items():
origVal = frame[col][idx] + colSeries[col]
if not np.isnan(val):
assert val == origVal
else:
assert np.isnan(origVal)
def test_frame_operators_col_align(self, float_frame):
frame2 = pd.DataFrame(float_frame, columns=["D", "C", "B", "A"])
added = frame2 + frame2
expected = frame2 * 2
tm.assert_frame_equal(added, expected)
def test_frame_operators_none_to_nan(self):
df = pd.DataFrame({"a": ["a", None, "b"]})
tm.assert_frame_equal(df + df, pd.DataFrame({"a": ["aa", np.nan, "bb"]}))
@pytest.mark.parametrize("dtype", ("float", "int64"))
def test_frame_operators_empty_like(self, dtype):
# Test for issue #10181
frames = [
pd.DataFrame(dtype=dtype),
pd.DataFrame(columns=["A"], dtype=dtype),
pd.DataFrame(index=[0], dtype=dtype),
]
for df in frames:
assert (df + df).equals(df)
tm.assert_frame_equal(df + df, df)
@pytest.mark.parametrize(
"func",