-
-
Notifications
You must be signed in to change notification settings - Fork 18.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
REF: Add Manager.column_setitem to set values into a single column (without intermediate series) #47074
REF: Add Manager.column_setitem to set values into a single column (without intermediate series) #47074
Conversation
…ithout intermediate series)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
lgtm
cc @jbrockmendel
pandas/core/frame.py
Outdated
@@ -3924,16 +3924,18 @@ def _set_value( | |||
Sets whether or not index/col interpreted as indexers | |||
""" | |||
try: | |||
# setitem will do validation that may raise TypeError, |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
should this comment refer to column_setitem instead of just setitem?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
it also looks like the new method doesn't actually do the validation this comment refers to?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is an existing comment (originally a few lines below), but so I suppose this comment was actually already not up to date anymore.
So before this PR the comment was about setitem_inplace
, and that also doesn't do any validation.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
setitem_inplace calls np_can_hold_element, which raises on failure
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Ah, yes, I see. That is doing validation that can raise the LossySetitemError. So the new column_setitem
calls setitem
, which will also call np_can_hold_element
, but there catching the LossySetitemError and coercing to the target dtype if needed.
That is something that the loc/iloc fallback below otherwise will also do, so I suppose this change is OK (but the comment is then indeed no longer correct, and we also don't need to catch LossySetitemError here)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
and we also don't need to catch LossySetitemError here
yah, possibly also TypeError and ValueError
@@ -1082,7 +1082,7 @@ def test_setitem_partial_column_inplace(self, consolidate, using_array_manager): | |||
tm.assert_numpy_array_equal(zvals, expected.values) | |||
assert np.shares_memory(zvals, df["z"]._values) | |||
if not consolidate: | |||
assert df["z"]._values is zvals | |||
assert df["z"]._values.base is zvals.base |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
this check could pass if both .base attrs are None
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, good catch (will update that). Now, I also not fully sure why this change was actually needed, will see if I can figure that out.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
OK, so before we had this piece of code in indexing.py (that was removed in this PR):
if ser._values is orig_values:
# The setitem happened inplace, so the DataFrame's values
# were modified inplace.
return
That ensures that it is actually still an identical array that is stored in df["z"]
.
Now this goes through column_setitem
, where I didn't add such a check, but simply always call iset
with the values from the SingleBlockManager. When creating the SingleBlockManager with iget
, this creates a view of the values (return self.values[i]
in Block.iget), so this is not anymore an identical array, only a viewing array.
Since the only important guarantee is that it shares the same data (which is already tested on the line above), I am inclined to just remove this additional assert
for identical arrays.
Alternatively, I could do a similar check in column_setitem
.
intermediate Series at the DataFrame level (`s = df[loc]; s[idx] = value`) | ||
""" | ||
arr = self.arrays[loc] | ||
# create temporary SingleArrayManager without ref to use setitem implementation |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
is the "without ref" here why you're not using .iget?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
looks like if you used .iget here then the method could be shared between AM/BM?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
is the "without ref" here why you're not using .iget?
The "without ref" comment is from copy pasting this from the initial CoW PR #41878 (so should probably remove that here).
But that is indeed the reason to not use iget
in that PR.
""" | ||
col_mgr = self.iget(loc) | ||
new_mgr = col_mgr.setitem((idx,), value) | ||
self.iset(loc, new_mgr._block.values, inplace=True) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
i think you can use _setitem_single here?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
iset
will indeed call _iset_single
in this case, but it still does some useful preprocessing that we might not want to repeat here I think (eg converting loc
in a blkno
)
mgr = SingleArrayManager([arr], [self._axes[0]]) | ||
new_mgr = mgr.setitem((idx,), value) | ||
# update existing ArrayManager in-place | ||
self.arrays[loc] = new_mgr.arrays[0] |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
the "into" in the docstring suggests that the setting should occur into the existing array, so we shouldn't need to set a new array. am i misunderstanding?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, that's right. But the setitem
method does that (setting into the existing array), or more correctly might do that.
So it certainly looks a bit confusing here, as it indeed seems that I am fully replacing the array for the column in question.
But so if the setitem
method changed the array inplace, this self.arrays[loc] = new_mgr.arrays[0]
is assigning the original array again and thus not changing anything / a no-op.
It's only if setitem
actually created a new array (eg the setitem caused a dtype change), that this line is doing something relevant.
In principle I could check if both arrays are identical, and only if that is not the case, do this self.arrays[loc] = new_mgr.arrays[0]
(although it wouldn't actually change any behaviour, that might be more explicit)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
In general I find it also a bit confusing in our internal API that setitem
(both the Manager and Block method) is a method that works in place (sometimes), but does return a manager/block.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
In general I find it also a bit confusing in our internal API that setitem (both the Manager and Block method) is a method that works in place (sometimes), but does return a manager/block.
yah, id be open to a name change (separate PR) for that. this is related to why i like setitem_inplace
pandas/core/frame.py
Outdated
series._mgr.setitem_inplace(loc, value) | ||
icol = self.columns.get_loc(col) | ||
iindex = self.index.get_loc(index) | ||
# error: Argument 2 to "column_setitem" of "BlockManager" has |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
might be unnecessary with a cast
in the takeable case
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I tried that before adding the ignore, but I don't really understand why it didn't work
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I suppose I didn't try before to only do the cast inside the takeable branch, because that now seems to work
(note, I did iindex = cast(int, index)
, which is strictly speaking not correct, because the index
can be anything that passes out is_integer
function. Should I use ScalarIndexer = Union[int, np.integer]
instead of int
, or it maybe also doesn't matter much in practice?)
# incompatible type "Union[Hashable, Sequence[Hashable]]"; | ||
# expected "Union[int, slice, ndarray[Any, Any]]" | ||
self._mgr.column_setitem(icol, iindex, value) # type: ignore[arg-type] | ||
self._clear_item_cache() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
could we make column_setitem always-inplace and make the clear_item_cache unecesssary?
API-wise i think the always-inplace method is a lot nicer than the less predictable one
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
or maybe could make setitem_inplace ignore CoW since it is explicitly inplace?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
could we make column_setitem always-inplace and make the clear_item_cache unecesssary?
The main use case of column_setitem
is in _iLocIndexer._setitem_single_column
, which is used for setting with loc
/iloc
. And for that use case, we need this to be not inplace (i.e. having the dtype coercing behaviour), since that is what we need for loc/iloc.
The case here is only for at
/iat
setting.
I could add a separate inplace version or add an inplace keyword to column_setitem
that could be used here. That would keep the current logic more intact, but since we fallback to loc/iloc anyway when the inplace setitem fails, I am not sure it would actually be very useful.
or maybe could make setitem_inplace ignore CoW since it is explicitly inplace?
Even something that is explicitly inplace from a usage perspective will need to take care of CoW in #46958
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I pushed a version with an inplace
keyword in the last commit (453eaba). I lean more towards "not worth it", but either way is fine for me.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@jbrockmendel do you have a preference on keeping this change with the inplace
keyword for column_setitem
or not?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actually it seems we still need to catch TypeError, for example for a MultiIndex case where self.columns.get_loc(col)
might not necessarily result in an integer.
So only removed LossySetitemError for now (and added a test case for setting with at
with a MultiIndex, as that didn't yet seem to be covered in the indexing tests)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
OK, can you add a comment about why TypeError is needed. what about ValueError?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Will add a comment about TypeError.
I am not fully sure about the ValueError. Is it possible for a setitem operation to raise a ValueError? (it seems that validation methods (like _validate_setitem_value
) will mostly raise TypeErrors?)
Now, this catching of a ValueError alraedy was here before, so I am hesitant to remove it without looking further in detail at it. I would prefer to leave that for another PR.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
So there are some cases where setitem actually raises a ValueError, eg when setting with an array-like that is not of length 1 (in this case of scalar indexer at
or iat
).
Now, the fallback to loc/iloc will then most likely also raise a ValueError (so catching it might not necessarily add that much). But at least in some cases it seems to change the error message.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
For example:
>>> df = pd.DataFrame({'a': pd.Series([1, 2, 3], dtype="Int64"), 'b': [0.1, 0.2, 0.3]})
>>> df.iat[0, 0] = np.array([0, 1])
...
ValueError: Must have equal len keys and value when setting with an iterable
Without catching/reraising in iloc, the error would be "ValueError: setting an array element with a sequence", which is slightly less informative.
I suppose we should actually see to make this handling consistent in the different code paths (so it directly raises the more informative error message in the first place), but that's out of scope for this PR.
pandas/core/indexing.py
Outdated
else: | ||
# in case of slice | ||
ser = value[pi] | ||
value = value[pi] | ||
self.obj._iset_item(loc, value) | ||
else: | ||
# set the item, first attempting to operate inplace, then |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
is this comment still accurate/helpful?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hmm, not really I think (but also not before this PR). The logic of "first attempt to operate inplace, then falling back to casting if necessary" is contained within the column_setitem
call (and before this PR it was contained in the setitem
call)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Now, it was added in 573c063, and from that point of view: I would say the comment is still as accurate as it was when it was added :)
But I think we can also remove it now, it's the general behaviour of loc/iloc to fallback to casting
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Might be worth discussing the gameplan for after the deprecation inside _setitem_single_column is enforced. What I had in mind was that inside of doing the can_hold_element check as part of take_split_path, we would do a try/except falling back to the split path. Does that idea play nicely with what you're doing here?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I would think that enforcing the deprecation would mean to remove the checks for "null/full slice" and so stop using _iset_item
to replace the column in those cases, and always use column_setitem
?
@@ -1090,8 +1090,6 @@ def test_setitem_partial_column_inplace(self, consolidate, using_array_manager): | |||
# check setting occurred in-place | |||
tm.assert_numpy_array_equal(zvals, expected.values) | |||
assert np.shares_memory(zvals, df["z"]._values) | |||
if not consolidate: | |||
assert df["z"]._values is zvals |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
See #47074 (comment) for comment about this removal
@jbrockmendel apart from the two comments you just added (will update for that), do you have any remaining substantial comments? Otherwise I would want to merge this so I can update #46958 on top of this. |
Given there are no more comments, I am planning to merge this |
…ithout intermediate series) (pandas-dev#47074)
The
column_setitem
is a method I was adding in #46958, is something that can be broken off from that PR, and is IMO also a generally useful change.Currently in some cases to set values into a single column (eg
df.loc[idx, "A"] = value
), we create an intermediate Series for that column, set values into that Series, and then update the DataFrame from that updated Series. I think it would be generally good to avoid creating this intermediate Series, and moving the actual/final "set" operation to the internals (as is done for other set operations).