-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathmemorization.py
100 lines (94 loc) · 4.1 KB
/
memorization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Copyright (c) 2012-2013, Razvan Pascanu
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy
class MemTask(object):
def __init__(self,
rng,
floatX,
n_values = 5,
n_pos = 10,
generate_all = False):
self.rng = rng
self.floatX = floatX
self.dim = n_values**n_pos
self.n_values = n_values
self.n_pos = n_pos
self.generate_all = generate_all
if generate_all:
self.data = numpy.zeros((n_pos, self.dim, n_values+2))
for val in xrange(self.dim):
tmp_val = val
for k in xrange(n_pos):
self.data[k, val, tmp_val % n_values] = 1.
tmp_val = tmp_val // n_values
self.nin = self.n_values + 2
self.nout = n_values + 1
self.classifType = 'softmax'
self.report = 'all'
def generate(self, batchsize, length):
if self.generate_all:
batchsize = self.dim
input_data = numpy.zeros((length + 2*self.n_pos,
batchsize,
self.n_values + 2),
dtype=self.floatX)
targ_data = numpy.zeros((length + 2*self.n_pos,
batchsize,
self.n_values+1),
dtype=self.floatX)
targ_data[:-self.n_pos,:, -1] = 1
input_data[self.n_pos:,:, -2] = 1
input_data[length + self.n_pos, :, -2] = 0
input_data[length + self.n_pos, :, -1] = 1
if not self.generate_all:
self.data = numpy.zeros((self.n_pos, batchsize, self.n_values+2))
for val in xrange(batchsize):
tmp_val = self.rng.randint(self.dim)
for k in xrange(self.n_pos):
self.data[k, val, tmp_val % self.n_values] = 1.
tmp_val = tmp_val // self.n_values
input_data[:self.n_pos, :, :] = self.data
targ_data[-self.n_pos:, :, :] = self.data[:,:,:-1]
return input_data, targ_data.reshape(((length +
2*self.n_pos)*batchsize, -1))
if __name__ == '__main__':
print 'Testing memorization task generator ..'
task = MemTask(numpy.random.RandomState(123),
'float32')
seq, targ = task.generate(3, 25)
assert seq.dtype == 'float32'
assert targ.dtype == 'float32'
print 'Seq_0'
print seq[:,0,:].argmax(axis=1)
print 'Targ0'
print targ.reshape((25+2*10, 3, -1))[:,0,:].argmax(1)
print
print 'Seq_1'
print seq[:,1,:].argmax(axis=1)
print 'Targ1'
print targ.reshape((25+2*10, 3, -1))[:,1,:].argmax(1)
print
print 'Seq_2'
print seq[:,2,:].argmax(axis=1)
print 'Targ2'
print targ.reshape((25+2*10, 3, -1))[:,2,:].argmax(1)