-
Notifications
You must be signed in to change notification settings - Fork 39
/
tempOrder3bit.py
70 lines (66 loc) · 2.97 KB
/
tempOrder3bit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright (c) 2012-2013, Razvan Pascanu
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy
class TempOrder3bitTask(object):
def __init__(self, rng, floatX):
self.rng = rng
self.floatX = floatX
self.nin = 6
self.nout = 8
self.classifType='lastSoftmax'
def generate(self, batchsize, length):
l = length
p0 = self.rng.randint(int(l*.1), size=(batchsize,)) + int(l*.1)
v0 = self.rng.randint(2, size=(batchsize,))
p1 = self.rng.randint(int(l*.1), size=(batchsize,)) + int(l*.3)
v1 = self.rng.randint(2, size=(batchsize,))
p2 = self.rng.randint(int(l*.1), size=(batchsize,)) + int(l*.6)
v2 = self.rng.randint(2, size=(batchsize,))
targ_vals = v0 + v1*2 + v2 * 4
vals = self.rng.randint(4, size=(l, batchsize))+2
vals[p0, numpy.arange(batchsize)] = v0
vals[p1, numpy.arange(batchsize)] = v1
vals[p2, numpy.arange(batchsize)] = v2
data = numpy.zeros((l, batchsize, 6), dtype=self.floatX)
targ = numpy.zeros((batchsize, 8), dtype=self.floatX)
data.reshape((l*batchsize, 6))[numpy.arange(l*batchsize),
vals.flatten()] = 1.
targ[numpy.arange(batchsize), targ_vals] = 1.
return data, targ
if __name__ == '__main__':
print 'Testing temp Order task generator ..'
task = TempOrder3bitTask(numpy.random.RandomState(123), 'float32')
seq, targ = task.generate(3, 25)
assert seq.dtype == 'float32'
assert targ.dtype == 'float32'
print 'Seq_0'
print seq[:,0,:]
print 'Targ0', targ[0]
print
print 'Seq_1'
print seq[:,1,:]
print 'Targ1', targ[1]
print
print 'Seq_2'
print seq[:,2,:]
print 'Targ2', targ[2]