-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathensemble_inference.py
208 lines (174 loc) · 6.68 KB
/
ensemble_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import pandas as pd
import json
import numpy as np
from tqdm import tqdm
import random
from collections import defaultdict
def read_lp_result(file_name):
head_rel = []
tail_rel = []
head = []
tail = []
rel = []
score = []
pred = []
with open(file_name) as f:
lines = f.readlines()
for line in lines:
h, r, t, s, p = line.split('\t')
p = p[:-1]
hr = (h, r)
tr = (t, r)
head_rel.append(hr)
tail_rel.append(tr)
head.append(h)
tail.append(t)
rel.append(r)
score.append(float(s))
pred.append(int(p))
d = {'hr':head_rel, 't': tail, 'tr': tail_rel, 'h': head, 'r': rel, 'score':score, 'pred':pred}
return pd.DataFrame.from_dict(d)
def get_relation_set(dataset):
rel_list = []
if dataset == "FB60K-NYT10":
rel_list = [
'/people/person/nationality',
'/location/location/contains',
'/people/person/place_lived',
'/people/person/place_of_birth',
'/people/deceased_person/place_of_death',
'/people/person/ethnicity',
'/people/ethnicity/people',
'/business/person/company',
'/people/person/religion',
'/location/neighborhood/neighborhood_of',
'/business/company/founders',
'/people/person/children',
'/location/administrative_division/country',
'/location/country/administrative_divisions',
'/business/company/place_founded',
'/location/us_county/county_seat'
]
if dataset == "UMLS-PubMed":
rel_list = [
'gene_associated_with_disease',
'disease_has_associated_gene',
'gene_mapped_to_disease',
'disease_mapped_to_gene',
'may_be_treated_by',
'may_treat',
'may_be_prevented_by',
'may_prevent',
]
return rel_list
def load_prompt_weights(dataset):
weights_file = f'./dataset/{dataset}/prompt_weights.json'
with open(weights_file) as f:
weights = json.load(f)
return weights
def inference(df, head=False, rel='all', prompts=None, weights=None, data_dir="", scores=None):
test_lines = open(data_dir + '/test.txt').readlines()
if rel != 'all':
# print(rel)
df = df[df['r']==rel]
new_lines = []
for line in test_lines:
if rel in line:
new_lines.append(line)
test_lines = new_lines
if head:
for line in test_lines:
h, r, t = line.split('\t')
t = t[:-1]
query = t + '||' + r
if query not in scores.keys():
scores[query] = defaultdict()
df_tmp = df[df['tr']==(t, r)].sort_values('score', ascending=False).reset_index()
for index, row in df_tmp.iterrows():
if row['h'] in scores[query].keys():
scores[query][row['h']] += row['score'] * weights[prompts[row['r']]]
else:
scores[query][row['h']] = row['score'] * weights[prompts[row['r']]]
else:
for line in test_lines:
h, r, t = line.split('\t')
t = t[:-1]
query = h + '||' + r
if query not in scores.keys():
scores[query] = defaultdict()
df_tmp = df[df['hr']==(h, r)].sort_values('score', ascending=False).reset_index()
for index, row in df_tmp.iterrows():
if row['t'] in scores[query].keys():
scores[query][row['t']] += row['score'] * weights[prompts[row['r']]]
else:
scores[query][row['t']] = row['score'] * weights[prompts[row['r']]]
return scores
def main():
dataset = 'FB60K-NYT10'
# dataset = 'UMLS-PubMed'
prompts_num_for_rel = 5
path = f'./dataset/{dataset}/'
weights = load_prompt_weights(dataset=dataset)
rel_list = get_relation_set(dataset=dataset)
prompts_template = {}
prompts_tail = {}
prompts_head = {}
for i in range(len(prompts_num_for_rel)):
prompts_template[i] = path + f"relation2template_{i}.json "
prompts_tail[i] = path + f"ours.link_prediction_tail_scores_p{i}.txt"
prompts_head[i] = path + f"ours.link_prediction_head_scores_p{i}.txt"
# tail
scores_tail = defaultdict(dict)
for i in range(len(prompts_num_for_rel)):
df = read_lp_result(prompts_tail[i])
scores_tail = inference(df=df, head=False, prompts=prompts_template[i], weights=weights, data_dir=path, scores=scores_tail)
# head
scores_head = defaultdict(dict)
for i in range(len(prompts_num_for_rel)):
df = read_lp_result(prompts_head[i])
scores_head = inference(df=df, head=True, prompts=prompts_template[i], weights=weights, data_dir=path, scores=scores_head)
# sort the results
test_lines = open(path + '/test.txt').readlines()
hits_tail = []
hits_head = []
ranks_tail = []
ranks_head = []
for i in range(10):
hits_tail.append([])
hits_head.append([])
for line in test_lines:
h, r, t = line.split('\t')
t = t[:-1]
tail_query = h + '||' + r
head_query = t + '||' + r
tail_truth = t
head_truth = h
sorted_score_tail = sorted(scores_tail[tail_query], key=scores_tail[tail_query].get)
sorted_score_head = sorted(scores_head[head_query], key=scores_head[head_query].get)
rank_tail = sorted_score_tail.index(tail_truth)
rank_head = sorted_score_head.index(head_truth)
ranks_tail.append(rank_tail+1)
ranks_head.append(rank_head+1)
for hits_level in range(10):
if rank_tail <= hits_level:
hits_tail[hits_level].append(1.0)
else:
hits_tail[hits_level].append(0.0)
if rank_head <= hits_level:
hits_head[hits_level].append(1.0)
else:
hits_head[hits_level].append(0.0)
print("Tail Prediction:")
print('Hits @10: {0}'.format(np.mean(hits_tail[9])))
print('Hits @5: {0}'.format(np.mean(hits_tail[4])))
print('Hits @1: {0}'.format(np.mean(hits_tail[0])))
print('Mean rank: {0}'.format(np.mean(ranks_tail)))
print('Mean reciprocal rank: {0}'.format(np.mean(1./np.array(ranks_tail))))
print("Head Prediction:")
print('Hits @10: {0}'.format(np.mean(hits_head[9])))
print('Hits @5: {0}'.format(np.mean(hits_head[4])))
print('Hits @1: {0}'.format(np.mean(hits_head[0])))
print('Mean rank: {0}'.format(np.mean(ranks_head)))
print('Mean reciprocal rank: {0}'.format(np.mean(1./np.array(ranks_head))))
if __name__ == '__main__':
main()