Skip to content

Latest commit

 

History

History
64 lines (53 loc) · 3.51 KB

README.md

File metadata and controls

64 lines (53 loc) · 3.51 KB

Polars Resources

Social Communities

Machine Learning/AI

Deep Learning

Forecasting

  • Prophet.rb is a forecasting library. It supports multiple seasonalities, holidays, growth caps, and many other features.
  • MITIE does named-entity recognition. It finds people, organizations, and locations in text.

Other DataFrame Gems

Jupyter Notebook

N-dimensional Array Gems

Misc

  • SciRuby
  • Outlier Detection and Removal Though in Python it's a good high level introduction to the statistical concepts. Introduces you to IQR and Standard Deviation, the two main outlier removal types.
# Std Deviation - filtering 2 std deviations away
df = Polars::DataFrame.new({'example' => [10, 20, 30, 40, 50, 10000]})
mean = df['example'].mean
std = df['example'].std
outliers = (df['example'] < mean + (2 * std)) & (df['example'] > mean - (2 * std))
removed = df.filter(outliers)

#one liner
removed = df.filter((df['example'] < df['example'].mean + (2 * df['example'].std)) & (df['example'] > df['example'].mean - (2 * df['example'].std)))

#IQR
series = Polars::Series.new('example', [-2.08,  1.9, -5.70, 7.08,  0.73, -3.50, 2.57,  0.21, -9.26])
series.quantile(0.75, interpolation:"nearest")